
Operating system managing the CPU

How does an OS deal with signals that interrupt the fetch decode
execute cycle?

The purpose of the CPU is to process data by fetching, decoding and executing instructions from the main
memory. However, peripherals or software may require attention and so need to signal the CPU (known as
interrupts). This is accomplished by two different methods:

A. Polling
A repeated cycle where the CPU checks the status of a device. If it requires attention, then the next
address of the program counter is not run and instead the instruction of the peripheral that requires
execution is dealt with. Otherwise, the fetch, decode, execute continues as normal (and another
check-up is called at the end).

This is inefficient because repeated cycles of polling when there is no error and so no attention
requirement for multiple peripherals, is unnecessary and wastes processing time.

Fetch Decode Execute Send signal to peripheral Act on received signal

 (THEN REPEAT)

B. Interrupts

A device sends a signal on the control bus to the CPU to indicate that it requires attention. The CPU will then
respond accordingly and does not have to continually check up on the peripherals.

This means that a CPU actually has an extra stage in the operation cycle:

Fetch Decode Execute Interrupts (if control signals are received)
 (THEN REPEAT)

The CPU checks for interrupts before it begins to fetch the next instruction.
The CPU is designed to stop what it is doing and react to events once they occur to service the requirement of
the interrupt.

Interrupt service routine (ISR) = a software routine in an operating system or device driver whose execution is
 invoked by the reception of an interrupt.

Stacks are employed
ISR’s create a problem: the address for the next instruction stored in the program counter can’t just be
overwritten by the first instruction of the ISR. The program that was previously being executed must be
continued after the ISR is complete.
This is solved by using a stack. The stack momentarily sores the program counter’s instruction address until the
ISR has been completed. Multiple interrupts may occur and so the stack has a hierarchy

The PC holds the next instruction
address. Interrupt service routine A
needs to be ran. The value of the PC is
stored in the stack until the ISR has been
completed. The value in the stack is then
moved back into the PC so the CPU
knows where to begin processing from
again.

1 2

Take this example, The program is interrupted by ISR A, so the PC value
is placed in the stack while ISR A’s instructions are acted upon.

If another interrupt occurs, ISR B, with a higher priority - this in itself
must interrupt ISR A . Don’t forget that ISR A could consist of multiple
instructions…..

The value in the PC of ISR A is copied into the stack (along with any
other proceeding memory address values) and ISR B is placed in the PC
so acted upon. Once complete, as the stack has a hierarchy, the
instruction it left off in ISR A is moved to the PC. Finally the original
instruction address is copied back to the PC. Once ISR A is complete.

This will not always happen. Interrupt service routines (ISRs) are usually given
their own priorities. It may well be that a new interrupt has a lower priority
than the interrupt currently being executed so only once the current ISR has
been completed will the next ISR be ran.

A buffer = a region of a physical memory storage used to temporarily store data while it is being moved from
one place to another.

1

2

3

 2

4

5

Interrupt hierarchy

Interrupts will always have a higher priority than normal programs

being executed otherwise the interrupt service routines would never

be called.

e.g. If the computer crashes and the CPU is stuck in a situation it

can’t resolve, the cycle must be interrupted by the user with a higher

priority task such as running task manager/shutdown.exe.

Types of interrupts

Hardware
Power/reset buttons (calling shutdown or reset ISR)

Memory parity error (corruption data when transferred to the

memory)

Hardware failure encountered.

Hard drive has retrieved the requested data.

Software

Illegal instruction (an instruction that is not mentioned in the CPUs

opcode/instruction set, they commonly crash the computer)

Arithmetic overflow

New log-on request

Input/output I/O

Buffer nearly full

Signal the completion of a data transfer

Flushing a buffer (this empties/ writes all the data stored within the

buffer to the storage once the data within it exceeds a certain limit.).

A peripheral requires more data (e.g. printer)

Buffer is empty

Hard drives also contain a buffer; by utilising a buffer the CPU can send a block of data to be saved without
having to wait for the data to be physically stored onto the disk.
Buffers are used to write data to storage in larger sections rather than continually writing small pieces of data
that would degrade performance. When the buffer is empty an interrupt is sent to the CPU to request for
more data.

Buffers are also used for peripherals. When a key on a keyboard is pressed, an interrupt is sent to the CPU and
the keystroke is stored in the keyboard’s buffer. However, sometimes the OS may not be ready to deal with
the keyboard stroke and more keys may have been pressed. Instead of losing keystrokes, the buffer stores the
values until the OS is ready.

If the buffer overflows then the motherboard warns the user by sounding a beep.

As ISRs are part of the device driver, the OS is effectively using the driver to process the interrupt.

The scheduler

A scheduler is a utility program that arranges jobs or a computer’s operations into an appropriate
sequence.

Processor scheduling – managing the activity of the processes by the removal of the running
process from the CPU and the selection of another process on the basis of a particular strategy

A computer has the appearance of carrying out tasks simultaneously but the CPU can only
fetch//decode/execute one instruction at a time. The scheduler is responsible for making sure the
processor time is used as efficiently as possible.

A process is a piece of software that is currently being managed by the scheduler inside the OS.

What is the difference between scheduling and interrupting?
Interrupts are hardware signals sent to the CPU to request processing time. They are external to the CPU
and are software/driver generated. Interrupts are initially handled by the CPU before being passed over
to the OS.
This differs from scheduling, which makes pre-emptive decisions

Pre-emptive decisions are decisions on which process should be ran next or which ones should be
interrupted.

The main objectives of a scheduler are:
 Maximise throughput

 Be fair to all users on a multi-user system

 Provide acceptable response time to all users

 Ensure hardware resources are kept as busy as possible

 Avoid deadlock (processes waiting for each other) and starvation (when a process never gets any CPU time to
complete in a timely manner, owing to a higher-priority task always getting an advantage over it.

Algorithm 1 - Round robin (Pre-emptive)

This approach makes special use of a form of queue (ready-to-run queue) called FIFO. Processes are
despatched on a first in first out basis (FIFO).

Each process in turn being given a limited amount of CPU time called a time slice or a quantum. The
operating system sets an interrupting clock or interval timer to generate interrupts at specific times.
This method helps guarantee all users of the system get a reasonable response time and fair
amount of processing time.

Even if a process does not complete during its time slice, the dispatcher gives the CPU to the next
process and the previous process is put to the back of the FIFO queue (ready-to-run queue).
I.e. the process is pre-empted if it has not completed before the end of its time slice.

The first process to enter the queue will be the first process taken out of the queue for processing.
This means the processing is fair to all jobs.

If every job is more or less equally important then this algorithm is optimal. The main advantage of
round robin is that it is very simple to implement, owing to the fact it does not consider priorities.

All processes are given an equal time slice, which limits the chance for starvation.

On the downside, Round Robin does not take into account the priority of jobs so every job has equal
CPU time or is processed until complete. It is based on arrival time sequence of the processes.

Round robin is not suited to applications that have an interactive interface since the lag time between doing
something on screen and the process being able to handle it would be noticeable. There is a delay between he
time taken to swap processes. Round robin is best suited to situations where only a few simple processes are
running at any given time.

Algorithm 2 – First come first served (Not Pre-emptive)

Jobs are processed in the order in which they arrive, with no system of priorities. If every job is
more or less equally important then this algorithm is optimal and simple to implement.

Algorithm 3 – Shortest job first (SJF) (Not Pre-emptive)
Processes are sorted in the ready queue according to the estimated processor time needed.

This relies on the knowledge of how long a process requires, in order to complete its task. Most processes
are unable to supply this information, so it is up to the OS to analyse historical data and statistical
information on the process being run. Most burst processes are quite predictable. The algorithm is similar to
round robin only the processes are not pre-empted after a set amount of time, but rather are allowed to
complete.

Processes are completed in the order within the ready-to-run queue. SJF operates on the basis of where a
process is placed in the ready-to-run queue initially. Shorter jobs are always added to the front, while longer
ones go at the back.

SJF ensures that user interface based processes have higher priorities – cutting down their waiting time -
than more processor-intensive tasks (simple mouse clicks and keyboard strokes require smaller time slices).

Reducing average waiting time increases responsiveness and throughput.

SJF does not have to swap processes as often as round robin.

Drawbacks
SJF requires more processing to perform each swap due to the statistical analysis.
SJF is quite complex as if requires manipulating queues so processes are added into the correct places.
SJF can starve longer processes as they have lower priority compared to short processes that `jump’ ahead of
them in the queue.

Algorithm 4 – Shortest remaining time (Pre-emptive)

Processes are ordered in a queue so that the process with the shortest estimated time to completion is next
to run.
The SRT algorithm is very similar to SJF, with the biggest difference being that when a process is interrupted
and pre-empted, the time-remaining on that process is looked at and then the process is added ahead of any
other processes that have a long time left to run.

As time progresses, processes that require a lot of CPU time will slowly get a chance to run and the time they
will require will reduce. This increases their priority and increases their chances of running, so reduces
starvation.
A key design is that the queue must be in the shortest time order at all times, not just when a process is
added.

This tends to reduce number of waiting jobs, and the number of small jobs behind big jobs.
However, it requires advanced knowledge of how long a job will take.
This is easier for batch jobs that may run overnight (scientific/commercial jobs that are run regularly).

 SRT has advantages over SJF if the OS is actively pre-empting longer-running processes.

 The processor is allocated to the job closest to completion but it can be pre-empted by a newer

ready job with shorter time to completion.

Algorithm 5 – Multi-level feedback queues (Pre-emptive)

These algorithms are designed to:

 Give preference to short jobs

 Give preference to I/O bound processes

 Separate processes into categories based on their need for the processor

The algorithm implements several job queues and jobs may move between the queues that best suit
their needs and depending on how much processor time they need.

This does not have a ready-to-run queue but instead relies on three queues of differing priority. Level
0 (high) > level 1 (medium) > level 2 (low). Each queue works on a first come first serve basis.
However, the head of level 0 is always run before level 1 and level 2.

The aim is to maximise throughput. For example, due to bottleneck of transfer speeds, it is more
efficient to keep the I/O devices as continuously busy as possible. When programs try to
simultaneously send data to e.g. the printer a bottleneck does not occur.

MFQ implements a promotion and demotion system to prevent starvation:

 New processes are always added at the tail of level 0.

 If a process gives up processing time on its own accord then it will be pre-empted to the back
of the same level queue.

 If a process is pre-empted/stopped by the scheduler then it will be denoted to a lower queue.

 If a process blocks for I/O, it will be promoted one level.

Each process is given a fixed time slice. If a process uses the full amount of time, it will be stopped by the
scheduler. This is known as pre-emptive scheduling and for MFQ it will result in the process being
demoted, unless it is already in level 2.

A process that requires pre-emptive scheduling is not considered to be well behaved and could end up
monopolising the CPU if allowed to stay at level 0. This could be a CPU-heavy task or one that is poorly
programmed.

Well-designed programs give up time to ensure overall system liveliness. It will be pre-empted back into
the same level queue.

Blocked process, waiting for I/O devices are always promoted since:

1. They will already have to wait a certain amount of time before they become unblocked anyway –
it makes little sense making them wait any longer.

2. It ensures I/O devices are used to maximum efficiency, a process must be ready to send more
data as soon as an interrupt has occurred.

3. Sending data to an I/O device is not a CPU-intensive task so has only a small-time-slice.

For these reasons, promoting blocked processes does not negatively impact other processes and would
increase the throughput of other processes.

Comparing the algorithms

Pre-emptive means that the operating system carries out some criteria to decide how long to allocate to any
one task before giving another task a turn to use the operating system.
The act of taking control of the operating system from one task and giving it to another is called pre-empting.

First come

first serve

(FCFS)

Shortest job first

(SJF)

Shortest remaining

time (SRT)

Round robin (RR) Multi-level feedback

queues (MFQ)

The first job

to enter the

ready queue

will be the

first to enter

the running

state.

Jobs are sorted in the

ready queue

according to the

estimated time

needed. There is no

pre-empting so each

job will be run to

completion. Uses

statistical analysis

and historical data to

estimate processing

time.

The ready queue is

sorted on the

estimated time to

complete the process.

Processes that arrive

having a shorter time

to completion are

moved higher up in

the queue. The queue

is always in the

shortest time order,

not just when a

process is added like

in SJF. Reduces

starvation as slowly

the more CPU

intensive tasks will be

move up the queue.

Each process is

given a maximum

length of

processor time (a

time slice) in the

running state after

which it is put

back into the

ready queue. All

jobs are treated

fairly. Starvation

is greatly reduced.

Noticeable

latency on UI

applications due

to swap times and

lack of priority.

Several ready queues

are used, each with

different scheduling

algorithms. Jobs are

able to move between

queues as their

priorities change

Not pre-

emptive

Not pre-emptive Pre-emptive Pre-emptive Pre-emptive

First come

first serve is

fair in the

terms of

processing

jobs that

arrive but

long

processes can

cause other

processes to

wait

SJF is better

alternative to first

come first serve as it

maximises

throughput but it

relies on being able

to calculate

estimated processing

time so is more

complex. Can also

lead to starvation.

SRT maximises

throughput but longer

jobs may take longer

time to process when

short jobs keep

arriving in the queue.

Round robin is

the fairest of them

all but can be

inefficient, as all

process given

same priority of

processing time.

MFQ is the best overall

approach which modern

operating systems use.

It can utilise advantages

of many different

queues with different

scheduling techniques.

Tasks move to different

queues depending on

their priorities.

Few simple

processes

running at

any one time.

User-interface based

applications.

Responsiveness is

key.

SRT has advantages

over SJF if the OS is

actively pre-empting

longer-running

processes.

Few simple

processes running

at any one time.

Can prioritise (promote)

and demote certain

tasks between queues.

All tasks are also given

equal time slices. New

tasks added to the back

of level 0 to reduce

starvation.

