Chemical mathematical equations

Moles $=$ Molar volume $\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right) \mathrm{X}$ Volume $\left(\mathrm{dm}^{3}\right)$

e.g. How many moles are there in $200 \mathrm{~m}^{3}$ of Hydrogen gas at RTP?
$200 \mathrm{~m}^{3}\left({ }^{*} 1000\right) \rightarrow 2.0{ }^{*} 10^{5} \mathrm{dm}^{3} \quad$ At RTP $\mathrm{Mv}=24.0 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$
$2.0 * 10^{5} / 24=8330 \mathrm{~mol}$ (3s.f.)

Concentration (moldm-3-) $=$ Moles / Volume

e.g. How many moles of HCL in 1.5 litres of 2.3 M solution?

1 litre $=1 \mathrm{dm} 3 \quad$ 'M' means molarity $=$ concentration $\left(\right.$ moldm $\left.^{-3}\right)$
$\mathrm{N}=1.5 * 2.3=3.5 \mathrm{~mol}(2 \mathrm{s.f}$.

Concentration $\left(\mathrm{gdm}^{-3-}\right)=$ Mass / Volume

e.g. What is the concentration of 20 g of barium chloride dissolved in a $100 \mathrm{~cm}^{3}$ solution?
$100 \mathrm{~cm}^{3}=0.1 \mathrm{dm}^{3}$
Conc $\left(\mathrm{g} / \mathrm{dm}^{-3}\right)=20 / 0.1$

$$
=200 \mathrm{~g} \mathrm{dm}^{-3}
$$

Converting between concentrations

Converting volumes or areas

