What Is Binary?

Binary is a system of numerical notation that uses a base 2 system, opposed to the conventional 'denary'/base 10 system.

What is a base two system?

O The everyday counting system that we use is known as a base 10 system. This means that we have the ten numbers 0 to 9 . When another digit is required, we round up and use a new place value.

O In a base two system, there are only two numbers available (0 and 1). When a digit higher than a binary 1 is required, an increment resets the 1 to a 0 and an increment of the next digit to the left is produced.
O Each digit moving from left to right in binary represents a higher power of 2 when comparing to the base 10 system.
i.e. The index of 2 by which each digit represents increase by 1 successively from left to right.

Base 10 representation	128	64	32	16	8	4	2	1
Index representation	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
Binary	1	1	1	1	1	1	1	1

The uses of binary

* Computers are based on logic gate circuits. Their circuits can only understand two states: 1 and 0, on or off respectively. It is very easy to represent these two states in the circuits and therefore binary is also used for all data and instructions too.
* This includes: numbers, text, images, sound and program instructions.
* Each binary digit is referred to as a bit. Eight bits are referred to as a byte, while 4 bits (half a byte) is called a nibble.
* The highest number that eight bits can achieve is 256 (including 0) - calculated by $2^{8}=256$
* If a higher number needs to be stored then more bits are required.

File sizes

$\square 1$ Bit = A single 1 or 0

- 1 Nibble $=4$ bits (half a byte)
- 1 byte $=8$ bits
$\square 1$ Kilobyte $=1024$ bytes
- 1 Megabyte $=1,028,576$ bytes (1024*1024)

File	Size
One character of text	1 byte
A full page of text	30 KB
One small digital colour photograph	3 MB
Music CD	600 MB
ADVD	4.5 GB
Hard disk	1 TB

$\square 1$ Gigabyte (GB) = 1,073,741,824 bytes (1024*1024*1024)
$\square 1$ Terabyte $=1024 \wedge 4$ bytes $=1024$ Gigabytes
https://docsigoogle.com/forms/d/e/IFAlp QLSCEKSu2PQigVChVOQ8qMJDvif2MKBBmedgy 309 miO 5 E3H2GA/viewfo
rm

U: computinghomework2016
P: november2016

Answers beneath this box

