What Is Binary?

Binary is a system of numerical notation that uses a base 2 system, opposed to the conventional `denary'/base 10 system.

What is a base two system?

- The everyday counting system that we use is known as a base 10 system. This means that we have the ten numbers 0 to 9. When another digit is required, we round up and use a new place value.
- In a base two system, there are only two numbers available (0 and 1). When a digit higher than a binary 1 is required, an increment resets the 1 to a 0 and an increment of the next digit to the left is produced.
- O Each digit moving from left to right in binary represents a higher power of 2 when comparing to the base 10 system.
- i.e. The index of 2 by which each digit represents increase by 1 successively from left to right.

Base 10 representation	128	64	32	16	8	4	2	1
Index representation	27	26	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰
Binary	1	1	1	1	1	1	1	1

The uses of binary

- Computers are based on logic gate circuits. Their circuits can only understand two states: 1 and 0, on or off respectively. It is very easy to represent these two states in the circuits and therefore binary is also used for all data and instructions too.
- This includes: numbers, text, images, sound and program instructions.

- Each binary digit is referred to as a bit. Eight bits are referred to as a byte, while 4 bits (half a byte) is called a nibble.
- ♦ The highest number that eight bits can achieve is 256 (including 0) calculated by $2^8 = 256$
- ✤ If a higher number needs to be stored then more bits are required.

File sizes

- $\square 1 Bit = A single 1 or 0$
- 1 Nibble = 4 bits (half a byte)
- \Box 1 byte = 8 bits
- \Box 1 Kilobyte = 1024 bytes
- I Megabyte = 1,028,576 bytes (1024*1024)
- I Gigabyte (GB) = 1,073,741,824 bytes (1024*1024*1024)
- \square 1 Terabyte = 1024 \Lapha 4 bytes = 1024 Gigabytes

File	Size
One character of text	1 byte
A full page of text	30 KB
One small digital colour photograph	3 MB
Music CD	600 MB
A DVD	4.5 GB
Hard disk	1 TB

<u>https://docs.google.com/forms/d/e/1FAIp</u> <u>QLScEKSu2PQigVChvOQ8qMJDvi-</u> <u>f2MKBBmedqy3o9mi05E3H2GA/viewfo</u>

<u>rm</u>

U: computinghomework2016 P: november2016

Answers beneath this box