

STACKS
THE DATA STRUCTURE

#A stack is a last in first out dynamic data structure, abbreviated to LIFO. Data is put into

and removed from the structure from the same end.

Items are pushed (entered onto) or popped (retrieved) from the stack. Stacks are a

dynamic data structure (they can grow in size/ constantly change). Stacks can be static OR

dynamic.

Data cannot be accessed directly within a stack as all the items have to be removed that

come after/pushed in more recently until you can retrieve the desired item. To implement a

stack you need a top pointer to indicate the top of the stack in the array.

An empty stack will likely have a top pointer = 0 and a full stack is one with the top pointer

at a position out of the array’s bounds.

OPERATIONS ON THE STACK

List operation Description Example List contents Return Value/updates
list

pop() Removes and returns the
last item in the stack (top
item)

a.pop() [2,3,7,1] [2,3,7] & returns 1

Push(item) Adds a new item to the top
of the stack (end of list)

a.push(55 [2,3,7,1] [2,3,7,1,55]

Peek() Returns the top item from
the stack (last item in list)
but does not remove it from
the stack.

a.peek() [`blue’,`red’,`green’] green

isEmpty() Test to see whether the
stack is empty and returns a
Boolean value

a.isEmpty() [`blue’,`red’,`green’] False

isFull() Test to see whether the
stack is full and returns a
Boolean value

a.isFull() [`blue’,`red’,`green’] True

APPLICATIONS OF THE STACK DATA STRUCTURE

Interrupts

When running a program, The CPU is fetching, decoding and executing instructions.
However, peripherals or software may require attention and so send signals to the CPU along the

control bus. These are known as interrupts.

Once the CPU has finished executing the current instruction, it will not proceed to the next

instruction of the running program (in the program counter), instead it will have to copy all the

data/instructions currently held in the CPU’s registers and push them onto a stack. It will then jump

to the instruction that will run the interrupt service routine which may comprise of numerous

instructions. Once the interrupt service routine is complete (and provided there are no other

interrupts), all the data is pushed off the stack back into the CPU ‘s registers and the CPU carries on

from where it left of.

REFER to Mrs Kirkland’s notes on “Operating system managing the CPU” for more

IMPLIMENTATION OF THE STACK DATA STRUCTURE

s.size() Same as .length() function,
returns integer value for
size of stack.

a.size() [0,1,2] 3

Interrupt service routine (ISR) = a software routine in an operating system or device driver

whose execution is invoked by the reception of an interrupt.

We typically require 2 additional variables when using an array (static) for a stack. One to

indicate the top of the stack (the top_pointer) and another to indicate the maximum size of

the stack.

STACK PSEUDOCODE

PROCEDURE STACK():

stack = [“”] * 10

top_pointer = 0

continue = “Y”

WHILE continue == “Y”:

 choice = int(input(“Would you like to push(1), pop(2) or view items (3) from the stack?”))

 IF choice == 1 THEN

 IF top_pointer == len(stack) THEN

 print(“The stack is full”)

 ELSE:

 item = str(input(“Enter item to push to stack: ”))

 stack[top_pointer] = item

 top_pointer = top_pointer + 1

 END IF

 ELSE IF choice == 2 THEN

 IF top_pointer == 0 THEN

 print(“The stack is empty”)

 ELSE:

 item = stack[top_pointer – 1]

 print(“Item popped: “, item)

 stack[top_pointer – 1] = “”

 top_pointer = top_pointer – 1

 END IF

 ELSE:

 FOR i = 0 to len(stack -1):

 print(“Item: “, stack[i])

 NEXT i

 END IF

continue = str(input(“Continue (y/n) ? “)

continue = continue.upper()

END WHILE

END PROCEDURE

PYTHON ALGORITHM (LIMITTED LENGTH STACK)

PYTHON ALGORITHM (UNLIMITTED LENGTH STACK)

