
DATA STRUCTURES
COMPUTER LANGUAGES WILL HABE BUILT-IN ELEMENTARY DATA TYPES SUCH AS

INTEGER, REAL, BOOLEAN AND CHAR. THEY ALSO HAVE SOME BUILT-IN STRUCTURED
DATA TYPES SUCH AS: STRING, ARRAY AND RECORD.

THESE ARE MADE UP OF A NUMBER OF ELEMENTS OF A SPECIFIED ELEMENTARY DATA

TYPE.

ARRAYS
#An array is a data structure that allows you to store multiple elements under the same common

data type. These are static data structures and are immutable (can’t change in size/be edited)

 It is a finite, ordered set of elements of the same data type. Finite means there is a specific number

of elements and ordered implies that there is a first, second and third element of the array. They are

usually used when the size of the data structure is known in advanced e.g. a stack (although a stack

can be both static and dynamic)

 A 1-D array is a linear set of elements of the same data type.

 A 2-D array is simply a list of lists. It is like having two axes (x,y). We may want to have an

index position to indicate the element in the main list (this element will be a list in itself) and

then a second index to indicate the precise element within that element’s list.

In exams, we commonly imagine 2-D arrays as a table where there are columns and rows of

elements. Elements in their array are referred to by index of [row, column].

We write pseudocode of 2-D arrays as:

Array = [[L1E1, L1E2, L1E3, L1E4],

 [L2E1, L2E2, L2E3, L2E4],

 [L3E1, L3E2, L3E3, L3E4]]

 A 3-D array = a set of elements of the same type, indexed by 3 integers. [x,y,z]

 Arrays can have n-dimensions and so indexed by n-integers.

LISTS
#A list = an abstract data type consisting of a number of items in which the same item may occur

more than once. The list is sequenced. A list is mutable and dynamic.

The list is sequenced and so can refer to first, second, third,……. Item and we can also refer to the

last element of a list.

List operation Description Example List contents Return Value or updates
list

isEmpty(list) Tests for empty list a.isEmpty() [2,3,7,1] False

isFull(list) Tests for full list if static a.isFull() [2,3, ,] False

append(item) Adds a new item to the rear
(end) of the list

a.append(33) [2,4,6] [2,4,6,33]

remove(item) Removes the first occurrence
of an item form a list
(decreases length of list by 1

a.remove(13) [4,13,6,8,13] [4,6,8,13]

LISTS AND TUPLES
These are python’s versions of arrays.

 Tuples are lists that cannot be edited. Once created it cannot be changed in an way. This

property is known as immutable (can’t be edited). Can hold multiple data types.

 Lists are arrays that can be edited after creation so are mutable. Items, therefore, can be

added or deleted. However, they only hold one data type.

This means that the sizes of lists can grow, they are dynamic unlike an array or a tuple which will

ALWAYS have a fixed size so can’t grow. A tuple is static.

Lists use square brackets [,] vs Tuples use round brackets (,)

 Mutable Immutable

 More strenuous on memory resources Less strenuous on memory resources

Using tuples in the correct places will therefore gain a small performance increase.

DYNAMIC VS STATIC DATA STRUCTURE

A dynamic structure refers to a collection of data in memory that has the ability to grow or shrink

in size. It does this with the aid of the heap, a portion of memory from which free space is

automatically allocated or de-allocated as required.

A potential draw back of a dynamic data structure (like lists in python) is that an overflow error

may occur when the structure exceeds its maximum memory limit.

Dynamic data structures are very useful when implementing data structures do not have a finite

size (their maximum size is not known in advance). Good examples are queues, which are dynamic

so can grow in size.

NOTE: The queue can be given some arbitrary maximum in advanced to prevent memory overflow but
memory allocation in advanced is not required.

Another advantage of using a built-in dynamic data structure such as a list is that there are many

methods or functions that can be used in the implementation of other data structures like stacks or

queues.

e.g. length, pop, insert, remove, append and search.

List operation Description Example List contents Return Value or updates
list

pop() or pop(index) Removes and returns the last
item in the list OR the item of
stated index

a.pop() [2,3,7,1] [2,3,7] & returns 1

.index(item) Searches for an item in list
and returns index

a.index(22) [33,44,22,11] 2

search(item) Searches for an item in list
and returns Boolean

a.search(22) [33,44,22,11] True

length() or
length(list)

Returns integer value of
length of list

a.length() or
length(a)

[33,44,22,11] 4

insert(pos,item) Inserts new item at position
and shifts everything else
along to right (increases list
length)

a.insert(2,7) [45,18,3,13,33] [45,18,7,3,13,33]

A static data structure such as an array (or tuple) is fixed in size (immutable). It cannot increase in

size nor free up space while it is running. This is more demanding on memory resources.

The disadvantage of using an array to implement a dynamic data structure is that the size of the

array must be declared in advance. This is not suitable for queues since a number of items fills up the

array and no more can be added, regardless of how much frees space there is in memory.

RECORDS
#A record is a data structure used to group together a collection of related fields under a single

name. This may contain different data types.

When using records we must take a 3 step process:

1. Define the record structure: what fields will be in the record.

2. Declare a variable or array from the variable record.

3. Assign and retrieve data from the variable record.

An example in visual basic

RECORDS ARE NTO VERY USEFUL IF THEY CAN ONLY STORE DETAILS ABOUT ONE ELEMENT.

WE OFTEN USE ARRAYS TOGETHER WITH A RECORD STRUCTURE.

THIS ALLOWS US TO ALSO GET AROUND THE LIMITATION THAT ARRAYS CAN ONLY STORE

ONE DATA TYPE.

We use an array to store elements that are part of the record data structure. So rather than

separating the variables Student1 Student2 Student3 Student4 (which are all storing data in the

record structure TStudent), we can instead have an array Students[] that has multiple items all using

a record.

1. Defining the record

structure

2. Declaring the variables in the

record for the fields (this is

also declaring what fields

there will be in VB)

3. Assigning and retrieving data

from the variable record

QUEUES
THE DATA STRUCTURE

#A queue is a data structure operating on a FIFO basis (First in first out), containing an ordered

collection of items. New items may only be added to the rear of the queue and elements may only

be retrieved from the front of the queue.

Items are enqueued (added) or dequeued (removed).

The sequence of items is defined by the order in which they are added. The size of a queue depends

on the number of items in it, just like a queue at traffic lights.

Operations on queues: A queue is a dynamic and mutable structure.

In exams, the front pointer is made to point at the front (where items are removed) while the rear

pointer points at the back (where items are added).

The following queue operations are needed:

 enQueue(item) = Add a new item to the rear of the queue

 deQueue() = Remove the front item from the queue and return it

 isEmpty() = Test to see whether the queue is empty

 isFull() = Test to see whether the queue is full

APPLICATIONS OF QUEUES

1. Outputs waiting to be printed are commonly stored in a queue on disk. For example, on a network,

numerous clients may send work documents to a print server at a similar time. By putting the output

into a queue on disk, the output is printed on a first come first serve basis as soon as the Printer is

free.

2. Characters typed into a keyboard are held in a queue in a keyboard buffer.

3. Queues are useful in simulation programs. A simulation program is one which attempts to model a

real-life situation so as to learn something about it.

An example of a program that simulates customers arriving at random times at the checkouts of

supermarkets, and taking random times to pass through the checkout. With the aid of a simulation

program, the optimum number of check-out counters can be established.

The CPU scheduler often uses algorithms that use queues.

PSEUDOCODE FOR QUEUE (UNLIMITED LENGTH)

PROCEDURE QUEUE():

 queue = []

 top_pointer = 0

 rear_pointer = 0

 continue = “Y”

 WHILE continue == “Y”:

 choice = int(input(Would you like to enqueue (1), dequeue (2) or view items (3)? “))

 IF choice == 1 THEN:

 IF queue.IsFull() == TRUE THEN

 print(“Queue full”)

 ELSE:

 item = str(input(“Enter item to enqueue: ”))

 queue.append(item)

 top_pointer = top_pointer + 1

 ELSE IF choice == 2 THEN:

 IF queue.IsEmpty = TRUE THEN

 print(“Queue is empty”)

 ELSE:

 item = queue.remove(rear_pointer)

 print(“Item dequeued: “, item)

 rear_pointer = rear_pointer + 1

 END IF

 ELSE:

 FOR i = 0 to len(queue – 1):

 print(“Item : “, queue[i])

 NEXT i

 END IF

 continue = str(input(“Would you like to continue (y/n) ? “))

 continue = continue.upper()

 END WHILE

END PROCEDURE

PSEUDOCODE FOR QUEUE (LIMITED LENGTH) – VERY VERY UNLIKELY

PROCEDURE QUEUE():

 queue = [“”] * 10

 top_pointer = 0

 continue = “Y”

 WHILE continue == “Y”:

 choice = int(input(“Would you like to enqueue (1) or dequeue (2) or view items (3) ? “))

 IF choice == 1 THEN

 IF top_pointer == len(queue) THEN

 print(“The queue is full”)

 ELSE:

 item = str(input(“Enter item to enqueue: “))

 queue[top_pointer] = item

 top_pointer = top_pointer + 1

 END IF

 ELSE IF choice == 2 THEN

 IF top_pointer == 0 THEN

 print(“The queue is empty”)

 ELSE:

 item = queue[0]

 print(“Item dequeued: “, item)

 FOR i = 0 to len(queue) – 2:

 queue[i] = queue[i + 1]

 queue[i+1] = “”

 NEXT i

 top_pointer = top_pointer – 1

 END IF

 ELSE:

 FOR i = 0 to len(queue – 1):

 print(“Item: “, queue[i])

 NEXT i

 END IF

continue = str(input(“Would you like to continue? (y/n) “))

continue = continue.upper()

END WHILE

END PROCEDURE

PYTHON QUEUE ALGORITHM (LIMITTED LENGTH) – VERY VERY UNLIKELY

Example of this program in use

PYTHON QUEUE ALGORITHM (UNLIMITTED LENGTH)

 Example of this program in use

What are the differences:

The queue algorithm is the same as the stack algorithm for enqueueing/pushing. However, for

dequeuing (popping), the queue will remove the item from the index position 0 rather than the top

position.

The queue will then also have to shift all the elements one place to the left and replace the element in

front with a blank at each stage to remove the duplicate at the end.

The top pointer will then decrease

When dealing with unlimited length. We must append items to the end of the list and then increase

the top pointer by 1 (both stacks and queues). We still need the top_poitner but not for directing the

insertion of a new item.

When dequeuing from an unlimited queue, we must remove the first item (index option 1) then shift

all elements to the left one but we do NOT replace the item ahead with a blank since the last item in

the list (which is a duplicate) needs to be entirely deleted. We delete the last index position indicated

by (top_poistion -1).

