DATA STRUCTURES

BUILT-IN ELEMENTARY DATA TYPES
INTEGER, REAL, BOOLEAN AND CHAR STRUCTURED
DATA TYPES STRING, ARRAY AND RECORD

THESE ARE MADE UP OF A NUMBER OF ELEMENTS OF A SPECIFIED ELEMENTARY DATA
TYPE.

ARRAYS

#An array is a data structure that allows you to store multiple elements under the same common
data type. These are static data structures and are immutable (can’t change in size/be edited)

It is a finite, ordered set of elements of the same data type. Finite means there is a specific number
of elements and ordered implies that there is a first, second and third element of the array. They are
usually used when the size of the data structure is known in advanced e.g. a stack (although a stack
can be both static and dynamic)

= A 1-Darray is a linear set of elements of the same data type.

= A 2-Darray is simply a list of lists. It is like having two axes (x,y). We may want to have an
index position to indicate the element in the main list (this element will be a list in itself) and
then a second index to indicate the precise element within that element’s list.

In exams, we commonly imagine 2-D arrays as a table where there are columns and rows of
elements. Elements in their array are referred to by index of [row, column].

We write pseudocode of 2-D arrays as:

Array = [[L1E1, L1E2, L1E3, L1E4],
[L2E1, L2E2, L2E3, L2E4],
[L3E1, L3E2, L3E3, L3E4]]

= A 3-Darray = a set of elements of the same type, indexed by 3 integers. [x,y,z]
Arrays can have n-dimensions and so indexed by n-integers.

LISTS

#A list = an abstract data type consisting of a number of items in which the same item may occur
more than once. The list is sequenced. A list is mutable and dynamic.

The list is sequenced and so can refer to first, second, third,....... [tem and we can also refer to the
last element of a list.

List operation Description Example List contents Return Value or updates
list
isEmpty(list) Tests for empty list a.isEmpty() [2,3,7,1] False
isFull(list) Tests for full list if static a.isFull() [2,3,,1 False
append(item) Adds a new item to the rear a.append(33) [2,4,6] [2,4,6,33]
(end) of the list
remove(item) Removes the first occurrence | a.remove(13) [4,13,6,8,13] [4,6,8,13]
of an item form a list
(decreases length of list by 1

List operation Description Example List contents Return Value or updates

list
pop() or pop(index) Removes and returns the last | a.pop() [2,3,7,1] [2,3,7] & returns 1
item in the list OR the item of
stated index
.index(item) Searches for an item in list a.index(22) [33,44,22,11] 2
and returns index
search(item) Searches for an item in list a.search(22) [33,44,22,11] True
and returns Boolean
length() or Returns integer value of a.length() or [33,44,22,11] 4
length(list) length of list length(a)
insert(pos,item) Inserts new item at position a.insert(2,7) [45,18,3,13,33] | [45,18,7,3,13,33]
and shifts everything else
along to right (increases list
length)

LISTS AND TUPLES

These are python’s versions of arrays.

e Tuples are lists that cannot be edited. Once created it cannot be changed in an way. This
property is known as immutable (can’t be edited). Can hold multiple data types.

e Lists are arrays that can be edited after creation so are mutable. Items, therefore, can be
added or deleted. However, they only hold one data type.

This means that the sizes of lists can grow, they are dynamic unlike an array or a tuple which will
ALWAYS have a fixed size so can’t grow. A tuple is static.

Lists use square brackets [,] Vs Tuples use round brackets (,)
Mutable Immutable
More strenuous on memory resources Less strenuous on memory resources

Using tuples in the correct places will therefore gain a small performance increase.

DYNAMIC VS STATIC DATA STRUCTURE

A dynamic structure refers to a collection of data in memory that has the ability to grow or shrink
in size. It does this with the aid of the heap, a portion of memory from which free space is
automatically allocated or de-allocated as required.

A potential draw back of a dynamic data structure (like lists in python) is that an overflow error
may occur when the structure exceeds its maximum memory limit.

Dynamic data structures are very useful when implementing data structures do not have a finite
size (their maximum size is not known in advance). Good examples are queues, which are dynamic
SO can grow in size.

NOTE: The queue can be given some arbitrary maximum in advanced to prevent memory overflow but
memory allocation in advanced is not required.

Another advantage of using a built-in dynamic data structure such as a list is that there are many
methods or functions that can be used in the implementation of other data structures like stacks or
queues.

e.g. length, pop, insert, remove, append and search.

A static data structure such as an array (or tuple) is fixed in size (immutable). It cannot increase in
size nor free up space while it is running. This is more demanding on memory resources.

The disadvantage of using an array to implement a dynamic data structure is that the size of the
array must be declared in advance. This is not suitable for queues since a number of items fills up the
array and no more can be added, regardless of how much frees space there is in memory.

RECORDS

#A record is a data structure used to group together a collection of related fields under a single
name. This may contain different data types.

When using records we must take a 3 step process:

1. Define the record structure: what fields will be in the record.
2. Declare avariable or array from the variable record.
3. Assign and retrieve data from the variable record.

An example in visual basic

Record Structures

A complete example:

1. Defining the record
Module Modulel structure
Structure TStudent €

Dim firstName As String €) Declaring the variables in the

Dim surname@ds.Siring record for the fields (this is
Dim depositPaid As Double = also declaring what fields
Dim datePaid As Date there will be in VB)

End Structure

Sub Main()
Dim Studentl As TStudent ==~ 3. Assigning and retrieving data

from the variable record

Studentl.firstName = "Jeff"

Studentl.surname = "Williams"”
Studentl.depositPaid = 36.0
End Sub
End Module

RECORDS ARE NTO VERY USEFUL IF THEY CAN ONLY STORE DETAILS ABOUT ONE ELEMENT.
WE OFTEN USE ARRAYS TOGETHER WITH A RECORD STRUCTURE.
THIS ALLOWS US TO ALSO GET AROUND THE LIMITATION THAT ARRAYS CAN ONLY STORE
ONE DATA TYPE.

We use an array to store elements that are part of the record data structure. So rather than
separating the variables Student1 Student2 Student3 Student4 (which are all storing data in the
record structure TStudent), we can instead have an array Students[] that has multiple items all using
a record.

Declaring an array of records
Syntax:

Dim students(500) As TStudent

We can then reference any element of the array as we have done before, but
now with dot syntax for the fields:

students(5).firstName = "Jack"”
PN

1

Array field
name name

Array element

Sometimes called a
Subscript

QUEUES

THE DATA STRUCTURE

#A queue is a data structure operating on a FIFO basis (First in first out), containing an ordered
collection of items. New items may only be added to the rear of the queue and elements may only
be retrieved from the front of the queue.

Items are enqueued (added) or dequeued (removed).

The sequence of items is defined by the order in which they are added. The size of a queue depends
on the number of items in it, just like a queue at traffic lights.

Operations on queues: A queue is a dynamic and mutable structure.

In exams, the front pointer is made to point at the front (where items are removed) while the rear
pointer points at the back (where items are added).

The following queue operations are needed:

+ enQueue(item) = Add a new item to the rear of the queue

+ deQueue() = Remove the front item from the queue and return it
+ isEmpty() = Test to see whether the queue is empty

+* isFull() = Test to see whether the queue is full

APPLICATIONS OF QUEUES

1. Outputs waiting to be printed are commonly stored in a queue on disk. For example, on a network,
numerous clients may send work documents to a print server at a similar time. By putting the output
into a queue on disk, the output is printed on a first come first serve basis as soon as the Printer is
free.

2. Characters typed into a keyboard are held in a queue in a keyboard buffer.

3. Queues are useful in simulation programs. A simulation program is one which attempts to model a
real-life situation so as to learn something about it.

An example of a program that simulates customers arriving at random times at the checkouts of
supermarkets, and taking random times to pass through the checkout. With the aid of a simulation
program, the optimum number of check-out counters can be established.

The CPU scheduler often uses algorithms that use queues.

PSEUDOCODE FOR QUEUE (UNLIMITED LENGTH)

PROCEDURE QUEUE():

queue =]
top_pointer=0

rear_pointer=0
continue = “Y”
WHILE continue == “Y”:

choice = int(input(Would you like to enqueue (1), dequeue (2) or view items (3)? “))
IF choice == 1 THEN:
IF queue.IsFull() == TRUE THEN
print(“Queue full”)
ELSE:
item = str(input(“Enter item to enqueue: "))
queue.append(item)
top_pointer =top_pointer + 1

ELSE IF choice == 2 THEN:
IF queue.lsEmpty = TRUE THEN
print(“Queue is empty”)

ELSE:
item = queue.remove(rear_pointer)
print(“Item dequeued: “, item)
rear_pointer = rear_pointer + 1
END IF
ELSE:
FORi=0to len(queue —1):
print(“Item : “, queueli])
NEXT i
END IF

continue = str(input(“Would you like to continue (y/n) ? “))
continue = continue.upper()
END WHILE

END PROCEDURE

PSEUDOCODE FOR QUEUE (LIMITED LENGTH) — VERY VERY UNLIKELY

PROCEDURE QUEUE():

queue = [“"]* 10
top_pointer=0

continue = “Y”
WHILE continue == “Y”:

choice = int(input(“Would you like to enqueue (1) or dequeue (2) or view items (3) ? “))
IF choice == 1 THEN
IF top_pointer == len(queue) THEN
print(“The queue is full”)
ELSE:
item = str(input(“Enter item to enqueue: “))
gueue[top_pointer] = item
top_pointer = top_pointer + 1
END IF
ELSE IF choice == 2 THEN
IF top_pointer == 0 THEN
print(“The queue is empty”)

ELSE:
item = queue[0]
print(“ltem dequeued: “, item)
FORi=0to len(queue) — 2:
queue[i] = queueli + 1]
queueli+1] ="
NEXT i
top_pointer = top_pointer—1
END IF
ELSE:
FORi=0to len(queue — 1):
print(“Item: “, queue[i])
NEXT i
END IF

continue = str(input(“Would you like to continue? (y/n) “))
continue = continue.upper()

END WHILE

END PROCEDURE

>
—
L
Y4
|
=z
oD
>
o
(WN)
>
>
o
L
=>
|
T
T
O
=
(NN)
—
(@)
L
T
=
=
|
=
I
=
o
@)
O
—
<
[NH]
-
(WN)
-
g
=
©)
T
—
>
(a1

() oozd ananb

||| .,.n
() z=addn-ssucdsax = ssucdssx
ianuTtauoJul,) andut) 115 = Isuodsaa
||| .,.n
([Tl=n2nb *, :, ‘T ‘., W33Il,)autzd
sneanh a2yl uT we1T AZeas sierTdeTof t{({en=anb)u=a1 ‘p) =20ueI utr T IcT
T Ag Z=jutod =2yl SlULW=2I0UT# 1 =+ I=jutod doa
an=nkb Jo }oBq 01 W21T MU SRRV WaaT = [I=auted doa]snonb
((. :=n=nb sys o3 sn=nbus 03 W2AT UP Isjud,)sndur)Ias = wWIIT
{LTIINT ST =2n=2nb =uyr,)utad
(p«) =apur 2geT ueyl I=qe=2xb =T zajurtod =yl IT# : (snanb)uaT — I=qutod doa IT
ananb 22Ul Jo YoEg 2Ul 03 WalT Insnbudi 7 == 3IDTOYZ ITT=
=n=nb Io xoevq s=aepdns 1 =— z=qutocd doa
un = —._u + ._””_M.nJ.U.n._HU
BbutazTys Duten sn=nb Jo juoxz s=aepdng [T + Tl=2n=a2nb = [t]=2n=nb
{(T-(=n=nb)u=at) ‘p) =0uUex utr T ICT
(w23t 4, :pensnbsp waar,)autad
w=2qT quoIy sananbagd [o]l=nanb = w23t
(ufadu=s T =snsnb suyr,)autad
Agdws usym pononbap 29 UBD SWLAT ON# g =— Iaaured doa IT
snsnb IO 2Ieds WoIT SW=1T snanbagd T = 3DTOUYD IT
((n éi=n=nb 2y3 2yl woII (£)sw=3T Ma3TaA I0 (7)) =n=nbus 10 (1) =n=nbap 02 =¥TT noi PINOM,) indur)iurT = 22TO0UYD
||| .#
'uky == =2sucdsaI =TTUM
wha = =@sucdsai
||| .ﬁ
0 = I=qured doa
0T # [uu]l = =n=nb
:{)ooxd znanb I=p

I=ajuted doa =yl SurtpnToutr =ovTd SuCc 3F=T SUYl 03 SIUIWST=2 TI® 2ATITUS
W=21T I8ITT =241 =aocmaz =2 (Bburtddod) Hurnanbap uym ATuo wgaTIobie IHoepase 2yl o3

07 2APY U3yl 34 SUBIW STUI$
TESTIUWaPT ST WYT1IobTe aul#

371905 WepPY :2IN3onIas vaTp 2nanii

Would
Enter
Would
Enter
Would
Enter
Would
Item
Item
Item
Item
Item
Item
Item
Item
Item
Item
Would

Would

Example of this program in use

you like to degqueue (1) or engqueue
an item to engueuws to the gqueues: 1
yvou like to degqueus (1) or engueus
an item to engueue to the gqueue: 3
you like to degueus (1) or engueus
an item to engueus to the queus: 5
you like to dequeue (1) or engueue
0: 1

1 3
2 5
3
4
5
6
T
8
]

(2} or
(2) or
(2) or
(2} or

wiew

wiew

view

wiew

icems (3)

items (3)

items(3)

icems (3)

[p%]

from the the gueue?

L)%]

from the the gueues?

[%]

from the the gqueus?

from the the gueus? 3

you like to degqueus (1) or engueue (2) or wiew items(3) from the the queus? 1
Item degqueued: 1

you like to degueus (1) or engueus

Item degueusd: 3

Would
Item
Item
Item
Item
Item
Item
Item
Item
Item
Item
Would

you like to dequeue (1) or engueue
0= 5

S e N 3 BT R U O T

!
[

9

(2) or wview items=(3)

(2) or wview items (3)

from the the gqueus? 1

from the the gqueue? 3

you like to dequeus (1) or engueuse (2) or wview items(3) from the the gueus?

PYTHON QUEUE ALGORITHM (UNLIMITTED LENGTH)

SlI=1T

MaTh

Io

HummﬂuﬂUquHﬂ
() z=2ddnasucdsax = asuocdsax

{{, " (U/A) SNUTIUOD 031 3HTIT NoA PTIOOM,) Andur)Ias = sucdsaa

” —.”— MH.._.MH.._.U ! Il . 1 .‘._” ! (] ._Hm.HH :“_ .H_..|“||H
r{{en=nh)u=aT *g)=20uei Ut T IC

w
m

=
i

(T- I=3utod doa)dod-asn=nb
1- I=aurcd dog = asjurocd doa

[T+ Tl=n=nb = [tT]=n=nb
:{T- {(ononbju=1 ‘g) =buex ur T I0T

(u=at ‘Y, "p=nsnbap w=aT,)auTta
[o]l=2n=2nk = m=2atT

5 —c—
" = ||

w
u

{fadus ST 285TT,)AUTI
0 = I=sautod doa IT

I — S9OTOUD ITI=

T + I=quted doa = z=jurod doa

(=23 T) pu=adde " an=nb

{{, :=n=anbu= o021 w=aTt I=aud,)andurt)Ids = W2t
T == IDTOUD IT

@n=nbap ‘(1) =2nenbuz 031 =TT NoA PINON,)andur) Ut = =20TOUD

tuka = asuocdsaI aTTyYM

wku = =5undsaI

0 = I=zaurtcd doa
[] = =2n=anb
: {}zananb ooxzd I=p

Example of this program in use

Wonld vou like to engueue (1), degueue (2) or wiew item=s (3)7? 1
Enter item to engueuns: 1

Wonld vou like to engueue (1), degueue (2) or wiew item=s (3)7? 1
Enter item to engueuns: 2

Wonld vou like to engueue (1), degueue (2) or wiew item=s (3)7? 1
Enter item to engueuns: 3

Wonld vou like to engueue (1), degueue (2) or wiew item=s (3)7? 1
Enter item to engueuns: 4

Wonld vou like to engueue (1), degueue (2) or wiew item=s (3)7? 3
Item O : 1

Ttem 1 : 2
Ttem 2 : 3
Ttem 3 : q

[§%]

Wonuld vou like to engueue (1), degueue (2) or wiew items (3) 7
Ttem degqueued: 1

Wonld vou like to engueue (1), degueue (2) or wiew item=s (3)7? 3
Item O :@: 2

Item 1 : 3

Item 2 : 4

Wonld vou like to engueue (1), degueue (2) or wview items (3)7 2
Ttem degqueued: 2
Wonld vou like to engueue (1), degueue (2) or wiew item=s (3)7? 3
Item O : 3

Item 1 : 4

Wonld vou like to engueue (1), degueue (2) or wiew item=s (3)7? 1
Enter item to engueuns: 5

Wonld vou like to engueue (1), degueue (2) or wiew item=s (3)7? 3
Item O : 3

Item 1 : 4

Item 2 : 5

Wonld vou like to engueue (1), degueue (2) or wview items (3]?'

What are the differences:

The queue algorithm is the same as the stack algorithm for enqueueing/pushing. However, for
dequeuing (popping), the queue will remove the item from the index position O rather than the top
position.

The queue will then also have to shift all the elements one place to the left and replace the element in
front with a blank at each stage to remove the duplicate at the end.

The top pointer will then decrease

When dealing with unlimited length. We must append items to the end of the list and then increase
the top pointer by 1 (both stacks and queues). We still need the top_poitner but not for directing the
insertion of a new item.

When dequeuing from an unlimited queue, we must remove the first item (index option 1) then shift
all elements to the left one but we do NOT replace the item ahead with a blank since the last item in
the list (which is a duplicate) needs to be entirely deleted. We delete the last index position indicated
by (top_poistion -1).

