HOW IS COAL MINED?

OPENCAST MINING

Opencast mining = mining that takes place from surface quarries (or open pits)

All of the overlying rock (*overburden*) must be removed, this will be critical to the economics of the process. The sides of an open pit are **dug at an angle and stepped** in order to increase stability and prevent collapse. The flat parts of the steps are called **benches**.

The angle of the sides depends on:

- **Rock type**: weak, incompetent rock like clay requires a shallower angle to prevent slumping.
- **Weathering**: heavily weathered rock will be weaker and need shallow sides to prevent rock falls and slumping.
- **Structures** such as faults and joints (lineations) weaken the rocks so may need rock bolts, shotcrete, wire netting, rock drains or other ground improvement strategies.

The *overburden* is removed and piled up at the sides of pits. These piles are known as **spoil heaps**. **Blasting** is used to break up the coal and large excavators called **dragline excavators** are used to extract it (each scoop can remove up to 450 tonnes of coal in one pass, using a large bucket on the end of the dragline). After the mining operation is completed, the mines are refilled with the overburden. In Britain, the thickest coal seams being mined are ~2.5m whereas, in the USA, the thickest seams are ~30m.

UNDERGROUND COAL MINING

- **Spoil heaps** comprise of waste rock piled up on the ground beside a mine.
- **Longwall mining** is a highly mechanised method of underground mining.
- A **shaft** is a vertical opening of an underground mine.

Longwall mining (the main method used in the UK) involves **digging a shaft** from the surface to the reserve and **digging tunnels or roadways** away from the shaft. A **ventilation shaft** is also vital.

In Longwall mining, **two horizontal roadways** are driven out to the furthest of the area of coal being extracted in order to **assess geological conditions** before extraction.

After this, a **coalface (up to 400m)** (a longwall) is established **between the two roadways** and a **rotating machine** called a **shearer** moves to and fro **along the coalface**, cutting slices of coal. **The coal falls onto a conveyor belt** and is **transported** to the shaft and up to the surface.

The roof is held up by **mobile hydraulic steel supports called chocks**. Once a slice is removed, the **chocks move forward** and the mined-out area is allowed to **collapse**. This system of **deliberate collapse** can cause **subsidence** on the surface.

Mining will **retreat towards the shaft** so that the mine can be used in the event of a collapse – it does not obstruct the route to the shaft. However, if the mined-out area **does not collapse immediately** then a **cavern can open up**, putting **immense pressure on the chocks**.
<table>
<thead>
<tr>
<th>Geological factors making coal mining difficult and uneconomic.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faults displacing a coal seam</td>
</tr>
<tr>
<td>Folds and steep dips.</td>
</tr>
<tr>
<td>Washouts resulting from river channel switching on the delta top</td>
</tr>
<tr>
<td>Seam splitting</td>
</tr>
<tr>
<td>Sandstones</td>
</tr>
<tr>
<td>The build-up of methane gas</td>
</tr>
</tbody>
</table>

Opencast coal mining is very efficient and high rates if production can be achieved. This is vital as coal is a cheap, bulk commodity. It can be extracted down to depths of 100m or exceptionally 200m provided the ratio of the stripped overburden to the coal is less than 20 to 1.

Longwall underground coal mining is highly mechanised and so can achieve similar yields as open cast mines provided the geological conditions are favourable.

Opencast mining is cheaper than underground mining; the setup costs are lower and a smaller workforce is required. Although the machinery can be expensive. It is much cheaper than the high-tech machinery needed in longwall mining. Moreover, thinner coal-seams can be extracted at a profit as they are easier to extract. Opencast mining is also safer than underground mining. Ventilation equipment is not required for an open pit.

Underground mining is a dangerous occupation. The main dangers are cave-ins and tunnel collapses, explosions caused by methane gas and flooding. Rescue of mine workers trapped in an underground mine is also difficult.
Faulting
Zone of weakness and permeability - may cause collapse or flooding
Coal seam has been displaced by movement of fault - disrupts production
Fault plane

Washout
Washout - river channel on delta top has switched and eroded away the peat/coal
Coal seam replaced by hard channel lag conglomerate and sandstone

Seam splitting
This part of the delta underwent more rapid subsidence

Coal seam
No coal - shearer cannot cut through hard sandstone

Thick coal seam
Thin, unworkable coal seams