Algorithms and Python practical exercises Feb 2017

TASK 1

1. Write the algorithm the question asks you to.
2. Write this program in Python and check it works
eTeifi Books sell ebooks via the Internet. A customer is awarded a bonus voucher which they are able to use to save money off a future purchase if they have bought:

- more than ten ebooks
or
- more than five ebooks with a total value of more than $£ 50.00$

Write an algorithm with inputs NumbereBooksBought and TotalValueeBooksBought and outputs either "Award bonus" or "Do not award bonus".

For example, with inputs
660
The output would be "Award bonus".

PROCEDURE VOUCHER

Award $=$ FALSE

Input NumbereBooksBrought
Input TotalValueeBooksBorught

IF (NumbereBooksBrought) > 10 OR (TotalValueeBooksBorught > 50.00 AND NumbereBooksBrought > 5) THEN
Award = TRUE
END IF

IF award == TRUE THEN print("Award bonus")
ELSE:
print("Do not award bonus")
END IF

END PROCEDURE

```
def proc_award():
    award = False
    eBooks = int(input("Enter number of eBooks brought: "))
    price = float(input("Enter total price of this purchase (£yy.pp) £"))
    if (eBooks > 5 and price > 50.00) or (eBooks > 10):
        award = True
    if award == True:
        print("Award bonus")
    else:
        print("Do not award bonus")
```

proc_award() \#runs award program

e Python 3.5.2 Shell

File Edit Shell Debug Options Window Help
Python 3.5.2 (v3.5.2:4def2a2901a5, Jun 25 2016, 22:01:18) [MSC
tel)] on win32
Type "copyright", "credits" or "license()" for more information >>>
RESTART: E:/Documents/OneDrive - The Howard of Effingham Schoo
12/Computing - 26.02.17/Mrs Berry/Python Programming/Algorithm orksheet.py
Enter number of eBooks brought: 5
Enter total price of this purchase (£yy.pp) £50
Do not award bonus
$\ggg \mid$

TASK 2

1. Write the algorithm the question asks you to.
2. Write this program in Python and check it works
```
A diving competition calculates the final mark for each dive based on the marks of six judges.
Each judge awards a mark individually (up to a maximum mark of 6.0).
The highest mark and the lowest mark are recorded but not used to calculate the final mark.
The final mark is calculated by adding the four remaining marks together and dividing by four.
Using a basic text editor, write an algorithm, which inputs six judges' marks and outputs the
lowest mark, the highest mark and the final mark. Save your completed algorithm as
DivingAlgorithm.txt
For example, with inputs:
5.9
6.0
5.9
5.7
5.6
5.7
The output would be:
Highest:
6.0
Lowest:
5.6
Final Mark:
5.8
```


PROGRAM DivingCompetition

Judges $=[$] *6
For $\mathrm{i}=0$ to length(Judges) -1 :

REPEAT

Judges[i] = int(input("Enter a score between 0 and 6"))
Until (Judges[i] <= 6) and (Judges[i] >= 0)
NEXT i
complete $=$ FALSE
WHILE complete $==$ FALSE:
complete = TRUE
For $\mathrm{i}=0$ to length(Judges) -2 :

IF Judges[i+1] < Judges[i] THEN
temp = Judges[i]
Judges[i] = Judges[i+1]
Judges[i+1] = temp
complete $=$ FALSE
END IF
NEXT i
END WHILE

Print("Highest: " + str(Judges[length(Judges)-1])
Judges.remove[length(Judges)-1]
Print("Lowest: " + str(Judges[0])
Judges.remove[0]

```
Enter a score between 0 and 6: 4
Enter a score between 0 and 6: 5
Enter a score between 0 and 6: 6
Enter a score between 0 and 6: 5
Enter a score between 0 and 6: 4
Enter a score between 0 and 6: 1
Highest: 6
Lowest: 1
Final mark: 4.5
@. I
```

mark $=($ sum.Judges[]) $/ 4$
print("Final mark: " + str(mark))
\#Diving Competition
def proc diving ():
Judges $=[0] * 6$
for i in range (0,len(Judges)):
Judges[i] $=-1 \quad$ \#invalid range
While (Judges[i] > 6) or (Judges[i] < 0): \#error checking
Judges[i] = int(input("Enter a score between 0 and 6: "))
\#\#\#
complete $=$ False \quad \#Bubble sort
while complete $==$ False:
complete $=$ True
for i in range (0, len(Judges) -1):
if Judges[i+1] < Judges[i]:
temp $=$ Judges[i]
Judges[i] = Judges[i+1]
Judges $[i+1]=$ temp
complete $=$ False
\#\#\#
print("Highest: " + str(Judges[len(Judges)-1]))

Judges . remove (Judges [len (Judges) -1])
print("Lowest: " + str(Judges[0]))
Judges.remove (Judges[0])
mark $=($ sum(Judges) $) / 4$ print("Final mark: " + str(mark))
\#removes last item (highest item) in list \#removes 1st item (lowest item) in list

TASK 3

1. Write the algorithm the question asks you to.
2. Write this program in Python and check it works.

The manager of a mobile phone shop has many staff members. Each staff member's monthly sales of mobile phone contracts are recorded over a period of 12 months. If a staff member sells more than 4 mobile phone contracts in one month they are awarded a bonus.

Using a basic text editor, write an algorithm, which:

- inputs the number of staff members;
- inputs the number of monthly sales of mobile phone contracts for each staff member;
- outputs whether a staff member has a bonus for that month;
- calculates the total annual sales of each staff member;
- outputs the total annual sales for each staff member.

A partial example of the input and output of the algorithm is shown below.
(... indicates lines of input and output that are not shown)

Please enter the number of Staff members: 3
Enter month 1 figures for Staff member 1: 2
Enter month 2 figures for Staff member 1: 5
Bonus awarded.
Enter month 3 figures for Staff member 1: 3

Enter month 12 figures for Staff member 1: 2
Enter month 1 figures for Staff member 2: 3

Enter month 12 figures for Staff member 3: 3
Totals:
Staff member 1: 38
Staff member 2: 29
Staff member 3: 42
number_of_staff = int(input("Enter quantity of staff"))
monthly_sale $=[[0$ for $x=1$ to 12] for $y=1$ to number_of_staff $] \quad \#$ 'sets 2D list with staff number of lists containing 12 items
For $\mathrm{i}=0$ to number_of_staff -1 :
total $=0$
print("STAFF NUMBER: " $+\operatorname{str}(\mathrm{i})$)

For $\mathrm{n}=0$ to 11:
monthly_sale $[\mathrm{i}][\mathrm{n}]=\operatorname{Int}($ input("Enter net number of contracts sold during month " $+\mathrm{n}+1$, ": ")) IF monthly_sale [i][n] > 4 THEN
print("Award bonus this month!")
END IF
total $=$ total + monthly_sale [i][n]
NEXT n

print("Total annual sales: ", total)

NEXT i

END
\#Sales program
def proc_sales():
number_of_staff $=$ int(input("Enter quantity of staff? "))
print (" $\overline{\text { n }}$ ")
monthly_sale $=[[0$ for x in range (12)] for y in range(number_of_staff)] \#2d list containing staff number of lists each with 12 items/months filled with 0 's
for i in range (0 , number_of_staff) :
print ("STAFF MEMBER: ${ }^{-}$+ str(i) + " $\backslash \mathrm{n} "$)
total $=0 \quad$ \#Annual total 0 to begin with
for n in range $(0,12)$: \#12 months per staff memeber monthly_sale[i][n] = int(input("Enter net number of contracts sold during month " + str $(\mathrm{n}+1)+$ ": ")) \#Sales each month if monthly_sale $[i][n]>4: \quad$ \#Award for sale >4 in 1 month print("Award bonus this month! $\backslash \mathrm{n}$ ")
total $=$ total + monthly_sale [i][n]
print("Annual sales made this year: ", total, " $\backslash \mathrm{n}$ ") \#Total no. of sales in 12 months
proc_sales()
\#ALTERNATIVE METHOD 1-D arral|
def proc_sales2():
number_of_staff $=$ int(input("Enter quantity of staff"))
print ($\bar{"} \backslash n^{\bar{n}}$)
monthly_sale $=[0]$ * $12 \quad$ \#1D list of length 12 items
for i in range (0 , number_of_staff):
print ("STAFF MEMBER: ${ }^{-}+$str(i) $+n \backslash n "$)
for n in range $(0,12)$:
monthly_sale[i] = int(input("Enter net number of contracts sold during month "))
if monthly_sale[i] > 4: print("Award bonus this month!")
total $=$ total + monthly_sale [i]
print("Annual sales made this year: ", total, " $\backslash \mathrm{n}$ ") \#Total no. of sales in 12 months
proc_sales2()

Abstract

Enter quantity of staff? 2 1 Enter net number of contracts sold during month 0: 4 Enter net number of contracts sold during month 1: 4 Enter net number of contracts sold during month 2: 4 Enter net number of contracts sold during month 3 : 4 Enter net number of contracts sold during month 4: 4 Enter net number of contracts sold during month 5: 4 Enter net number of contracts sold during month 6: 4 Enter net number of contracts sold during month 7: 4 Enter net number of contracts sold during month 8: 4 Enter net number of contracts sold during month 9: 4 Enter net number of contracts sold during month 10: 4 Enter net number of contracts sold during month 11: 4 Annual sales made this year: 48

Enter net number of contracts sold during month 0: 7 Award bonus this month!

Enter net number of contracts sold during month 1: 7 Award bonus this month!

Enter net number of contracts sold during month 2: 3 Enter net number of contracts sold during month 3 : 3 Enter net number of contracts sold during month 4: 1 Enter net number of contracts sold during month 5: 1 Enter net number of contracts sold during month 6: 0 Enter net number of contracts sold during month 7: 0 Enter net number of contracts sold during month 8: 0 Enter net number of contracts sold during month 9: 0 Enter net number of contracts sold during month 10: 0 Enter net number of contracts sold during month 11: 4 Annual sales made this year: 26

TASK 4

Answer this $\mathbf{2}$ mark question

Below is a segment of an algorithm that determines if a number is present in a sorted array with 8 elements, and if present, at what position the number is located in the array.

DIV performs a division calculation, where the remainder is ignored.

e.g. 13 DIV $4=3$ (remainder 1 is ignored)

```
Start \(=0\)
```

End = 7
Found = True
Position $=-1$
input SearchValue
repeat
set Middle $=($ Start - End $)$ DIV 2
if SearchValue $=$ ThisArray(Middle) then
set Found = True
set Position $=$ Middle
endif
if SearchValue>ThisArray(Middle) then
set Start = Middle +1
endif
if SearchValue<ThisArray(Middle) then
set End = Middle - 1
endif
until (Found = True) or (End < Start)
(a) There are two errors in the algorithm. On the algorithm, identify and correct both errors.
$=\quad$ 1.Found should be set to $=$ FALSE at the start of the program or the loop will not work correctly
2.It should be Set MIDDLE = (END - START) DIV 2 so we are working with positive values (the target value will be positive and compared to positive middle).

