
System development models for software

The stages of the waterfall model (and other general system development lifecycles)

With this methodology, less customer interaction is involved during development. The product is only shown

to the end-user when it is functioning at the end of the cycle.

1. FEASIBILITY/DEFINITION
All activities in this stage are directed toward answering whether or not, early on, if a program or solution to

a problem will work and be economically viable. If the conclusion is no, then we save time and money by

not going forward with the project.

2. REQUIREMENTS
We analyse carefully what the user wants and we refine the project goals into a set of requirements. This

stage will produce a detailed requirements specification document. This outlines everything that the user

wants the program to do. This document is checked an signed off during acceptance testing later on in the

testing/implementation phase.

3. ANALYSIS AND DESIGN
The requirement specification document is given to a design team who determine how the solution will be

accomplished. This phase describes features and operations in detail; with mock screen layouts, business

rules, process diagrams and pseudocode…… A test plan may also be produced to ensure all parts of the

system will work.

4. IMPLEMENTATION
Only once it is agreed that the team know what the program needs to do and how it is to do this task, the

documentation of a design specification is handed to programmers.

Code for the program is written.

5. TESTING
A testing environment checks all the parts of the implemented code for errors and bugs. The program code

is also compared with the system requirements specification to ensure it works as intended. This stage

takes a long time and is very important. Numerous different testing methodologies can be adopted.

In reality, testing usually occurs combined with the implementation process to ease the flow through the

waterfall model (reducing time and effort needed to pass code between a design and testing team).

6. EVALUATION
The program is evaluated against a detailed criteria based on the original design specification given by the

client and analyst. This stage aims to ensure the program does what is required and does not miss any key

functionality.

7. INSTALMENT/ DEPLOYMENT

The product is only given back to the client once the functional and non-functional testing has been

completed and the evaluation concludes the program functions as intended. Acceptance testing may be

used to give the client a chance to use the program and confirm it works as intended so the client may pay

the developer. The software is installed on user machines. Evaluated on basis of: effectiveness, usability

and maintainability.

8. MAINTENANCE

Some issues come up in the client environment as it is impossible to test all parts of a program with every

possible input, moreover, the users may use to program in a way not anticipated by the development team

and identify problems. To fix such issues: patches, updates with bug fixes and newer versions are released.

More about the design and analysis phases

Analysis: Before a problem can be solved, it must be defined. The requirements of the system that solve the

problem must be established. E.g. for a data processing system in a construction of a website………

 The data – origin, uses, volume, characteristics

 The procedures, what is done, where and how, how errors/exceptions are handled.

 The future – development plans and expected growth rates.

 Problems - with any existing system

Design: some of the following may be considered………..

 Processing - The algorithms and appropriate modular structure for the solution, specifying modules

with clear documented interfaces.

 Data structures – how data will be held and accessed (dynamic structures like trees or queues, or in

a file database).

 Output – content, format, sequence, frequency, medium (screen or hard copy) etc.

 Input – volume, frequency, documents used, input methods.

 User interface – screens and dialogues, menus, special-purpose requirements

 Security – How the data will be kept secure from accidental corruption or deliberate tampering or

hacking.

 Hardware - selection of an appropriate configuration.

The waterfall lifecycle model

The Waterfall Model illustrates the methodology described previously:

1. Feasibility/problem definition

2. Requirements specification

3. Analysis and design

4. Implementation (coding)

5. Testing and installation planning

6. Evaluation (documentation)

7. Installation/ deployment

8. Maintenance

Each step is completed one step at a time consecutively. Each step has specific outputs

leading to the next step. It is possible to return to a previous step meaning that they will

have to re-work previous stages in the light of experience gained as development

progresses.

The user/customer is involved in the start of the process, the Analysis stage, but then has

little input until the Evaluation stage.

For this reason, if the design specification requirements are not interpreted correctly or if a

coder overlooks the design requirements/misinterpreting desires then earlier stages must

be reworked and this is very expensive.

The model was adopted from the manufacturing industry, where changes to hardware

made later in the project had high cost implications to work already completed so it was

important to get each stage right before moving onto the next stage. This is still popular but

has now been superseded my more effective models.

Advantages Disadvantages

Model is easy to understand and
implement

Not suitable for projects with a moderate
to high risk factor of changing
requirements.

Easy to manage due to the rigidity – each
phase specific deliverables and a review
process

Once the application is in the testing stage,
it is difficult to go back and change
something that was not well thought out
in the concept stage.

Phases do not overlap and are completed
one at a time (may ensure each phase is
done correctly to avoid costly errors)

No working software is produced until the
end of the cycle so little feedback from the
buyer/user and hard to track progress.

Works well with projects where the
requirements specification is understood
well, is clear and fixed.

Not a good model for complex, object-
orientated projects.

With each stage having clear deliverables, it
is easy to see the plan timescale if certain
stages are taking too long. Progress
tracked

End user not involved much in the
development

When do we use this methodology then?
 When the requirements are clear, fixed so easily understood

 There is no ambiguity in the design specification.

 Ample resources with required expertise are available freely.

 The project is short

Rapid application development (RAD)

Rapid application development = a general term used to refer to alternatives to the conventional

waterfall model.

Less emphasis is put on the planning of a project and more focus is put on the process (in contrast

to the waterfall model that rigorously defines the requirement specification prior to entering the

design stage).

Adaptability is at the forefront of design, requirements are adjusted as knowledge is gained

through the development process.

The model works by successively prototyping the software until a final version has been produced.

This is far quicker than having to wait until the end of the cycle like in a waterfall model.

Several increasingly refined prototypes are made.

These are designed, coded and tested before being evaluated by the user. The user decides if the

program meets all their needs and feedback is given to plan the next iteration of a refined

prototype. Each cycle can last several weeks.

This method is adopted for large projects that made have development over a long period of time;

during which technology and user requirements change. In methodologies like the waterfall model

this change in user requirements alter on meant cost implications as earlier stages had to be

reworked. RAD offers the promise of delivering a product or at least a prototype of it much faster so

feedback is obtained.

Idea behind the methodology include:

1. Workshops and focus groups (with scrum masters ,leading teams and supervising their

progress).

2. Using prototyping to continually refine the system in response to user involvement and

feedback.

3. Producing a prototype in strict time limits – each part of the system may not be perfect in

prototype but good enough for feedback and insight.

4. Reusing any software components that have already been used elsewhere.

Advantages Disadvantages

The user feels more involved in the
process – seeing successive prototypes.

Regular contact needed with the client

The end product is more likely to match
he user requirements: saving time,
money and effort.

Does not scale well to large projects

The iterative manner makes it easy to
account for adjusting user
requirements over time.

Not suitable if efficiency of code is
priority.

The Spiral Model

The Spiral Model uses the same structures steps as the waterfall method but introduces the idea of

developing the software in iterative (repeating) stages. The main difference is it is a risk driven

approach.

At the start of each stage, the requirements are defined and the developers work towards an initial

prototype. Each successive loop around the spiral generates a refined prototype until the product is

finished. User interaction may not occur until the 4th stage (feedback from the user) although this

will only be at several week intervals.

The method has 4 stages that each take up one quadrant of the spiral. Each time around the spiral,

the following activities are performed.

1. Analyse the objectives and requirements for the next prototype. The next prototype is designed.

2. The risks and issues are identified and a prototype is developed (coded by implementation).

3. Testing of the refined prototype.

4. Evaluate the new prototype, which generates a plan for the next iteration – or if the project

meets all user requirements it is completed.

Advantages Disadvantages

Focusses on risks and issues – considering
these in the refined prototype.

Risk management is specialised and costly as
professional and competent risk management
is needed.

Works well for large projects May have less contact with the client than
agile or extreme programming methods. Can adapt to changing design requirements as

missing functionality is incorporated into the
next refined prototype.

User can give feedback at the end of each
prototype iteration/spiral.

The Spiral Model is mostly used

for large scale projects, for

example Photoshop CC,

projects that take years to

deliver.

 Iterative development – each

cycle can last several weeks.

The spiral model has aspects of

waterfall, incremental and

RAD.

The difference is that, this is a

risk driven approach to

development. It takes into

account that risk is at the heart

of many large scale

development projects and so is

designed to cope with risks and

deal with them during the

project before they become

major problems.

Agile modelling

Small projects use a variation on this methodology called Agile Model.

These are a group of development methodologies – not a singular one.

They focus on the idea that user requirements may change during development. This can only be

dealt with by using an iterative manner – with each iterative prototype having increased

requirements and being shown to the user.

At all the stages of analysis, design and implementation, an agile approach may be adopted, as the

stages of software development may not be completed in a linear sequence.

It may well be that some analysis is done and then some parts of the system are designed and

implemented while other parts are still being analysed. Then, for example, implementation and

testing may be intermixed . The developer may go back to design another aspect of the system.

Throughout this process, feedback may be obtained from the user.; this is an iterative process

during which changes made are incremental as the next part of the system is built.

Typically the software

developer’s do just

enough modelling at

the start to make sure

that the system is

understood by

themselves and the

users.

Each stage is built with user participation to ensure that the system is being developed in line with

what the user wants. The success of the software development depends on:

1. Keeping the model simple- So not trying to incorporate features which may come in useful

at a later date.

2. Rapid feedback from the user to ensure development is in line with the user needs.

3. Understanding that the user requirements may change during development as they are

forced to consider their needs in detail.

4. Being prepared to make incremental changes as the model develops.

Extreme programming

Extreme programming (XP) is a software development methodology that is intended to improve

software quality and responsiveness to changing customer requirements.

It is a type of agile software development, in which frequent “releases” of the software are made in

short development cycles.

This is intended to improve productivity and introduce checkpoints at which new customer

requirements can be adopted.

It involves the iterative process much like rad but the iterations are very short – often a single week

long.

A company requesting the software often embeds a user into the development team. New

requirements are built into successive iterations quickly. The user gives instant feedback on the next

iteration.

Paired programming may be used with a person who types the code and another who sits and

analyses this to give instant feedback.

Extreme programming (XP) and agile methodologies

Advantages Disadvantages

Quality of end code is very high (particularly
when user is in the development team or
paired programmers are used)

Increases development costs

Efficient code with fewer bugs (likewise) Heavy collaboration with the client is needed

More user interaction so more likely that the
end program meets user specifications.

Embedded end user is needed.

Strict time limits mean each prototype may not
meet the requirements and you have to wait
until next iteration for refinement.

When to use each approach

Waterfall system lifecycle is suitable for very small projects which need careful supervision, such as

those undertaken by students or trainees. The absence of user involvement is a serious drawback.

The spiral model and the agile model are an improvement in that they acknowledge that users

often cannot specify their requirements accurately because they don’t understand what is

possible. It is much easier to examine a prototype and figure out what needs to be done to turn it

into a useful system.

Extreme programming and rapid application development are good methodologies for larger

projects where there is a danger of getting bogged down or side-tracked by suggested

improvements, so that developers are constantly chasing a moving target.

