

Representing Binary in Computers:

 In a base two system, there are only two numbers available (0 and 1). When a digit higher
than a binary 1 is required, an increment resets the 1 to a 0 and an increment of the next digit
to the left is produced.

 Each digit moving from left to right in binary represents a higher power of 2 when comparing
to the base 10 system.

 The denary is converted to binary using the standard system of dividing by the base 2’s and
writing in the 1/0s to a grid.

i.e. The index of 2 by which each digit represents an increase by 1 successively from left to right.

Write 01111001
in decimal 27 26 25 24 23 22 21 20

Binary
value

0 1 1 1 1 0 0 1

Calculation 0 1*64 1*32 1*16 1*8 0 0 1
Denary 121
Write 176 in
binary 27 26 25 24 23 22 21 20

Binary
calculation

1 0 1 1 0 0 0 0

Binary 10110000

Sign and Magnitude

This method uses the most significant bit (the leftmost digit) to represent the sign and no magnitude
 (e.g. 0 = positive number 1 = negative number)
The digits to the right of this will only represent magnitude.
This means the largest number that can be represented with 8 bits is now 127 and -127.

Computers are told to interpret the binary in the sign-magnitude form by the data type in the code rather than
just positive 8 bits so 11111111 = -127 not 255 and 01111111 = 127. In exam questions’ you are told what
form to interpret the binary in.

 Two's Complement method
This is the most common way computers use to interpret negative numbers.

To get the two's complement negative notation of an integer, the decimal number is expressed in an
ordinary binary form. You then invert the digits and add binary one to the binary result. Remember
that the most significant digit of the binary number is now a negative e.g. 0 lots of 128 becomes 1 lots
of 128 but in a negative form (-128). This means we can only represent up to -128 in this form
10000000 but up to 127 positive form 01111111 using only 8 bits.

For example: Write -28 in binary form

 +/-
128

64 32 16 8 4 2 1

28= 0 0 0 1 1 1 0 0

Invert>>> 1 1 1 0 0 0 1 1

Add
binary
one to
this to
get -28

1 1 1 0 0 1 0 0

 +/- 128 64 32 16 8 4 2 1

53= 0 0 1 1 0 1 0 1

Invert>> 1 1 0 0 1 0 1 0

Add
binary
one to
this to
get - 53

1 1 0 0 1 0 1 1

How to add binary numbers:

Adding binary numbers in a normal form 8 bit form is simple.

 0 + 0 = 0

 1 + 0 = 1

 1 + 1 = 0 (and then carry one to the next significant column)

 1+1+1 = 1 (and then carry one to the next significant column)

For example, what is 10111010 + 01011011 (Subscripts = carried numbers)
 1 11 10 11 11 1 10 1 0

+ 0 1 0 1 1 0 1 1

= 1 0 0 0 1 0 1 0 1

The result is longer than 8 bits (1 byte) since an overflow occurred - a binary digit was
carried over into the 9 bit column. The computer requires an extra bit in order to store
this result. If it attempts to store this as an 8 bit binary value then the computer will
crash with a runtime error.

How to subtract binary numbers:
Subtracting binary numbers follows a similar system to subtracting decimal numbers. The difference
being that when a 1 is subtracted from a 0, 2 lots of 1 are carried over from the next significant
column. This happens since each binary digit has a value double that of the digit less significant than
it to the left.
If there is no binary 1 available in the next column (to the left) to carryover then we look to the next
digit on the left where a 1 is present. This is carried over and keeps on getting carried over to the
appropriate column until the subtraction can take place – remembering it brings two 1’s each time
but one is removed when a further two are taken to the next column to the left.

For example, what is 10110110 - 00111001 (Subscripts = carried numbers)

 1 1,10 1,11 1,11 1,10 1 1 1, 10

- 0 0 1 1 1 0 0 1

= 0 1 1 1 1 1 0 1

Example 2: what is 01001101 – 00110101 (Subscripts = carried numbers)
 0 1 1,10 1,10 1 1 0 1

- 0 0 1 1 0 1 0 1
= 0 0 1 1 1 0 0 0

Hexadecimal

Hexadecimal is a system of numerical notation that uses base 16. Hexadecimal digits are represented
by numbers 0 to 9 – numbers greater than 9 then use the alphabetical letters A to F. This means
there are 16 different numbers to represent the digits (including 0).

In Hexadecimal, the digits represent the number of 16’s we have in that particular place. Like with
binary, moving from left to right consecutively will increment the index of 16 by each time. The least
significant digit always represents 160 (= 1) and so the value of the digit for this is the same as in
decimal. The next digit to the left of this represents the number of 161’s present (i.e. the digit * 16).
Likewise, the next digit along will represent a higher power of 16 (162 = 256).
This pattern continues however since each digit in hexadecimal represents a specified power of 16,
less digits are required to store larger numbers than with a base 2 or base 10 system. Therefore,
exam questions tend to only have up to two hexadecimal digits.

 Hexadecimal is often used to represent binary numbers (particularly for long values representing RGB colours)

because each Hexadecimal digit represents 4 bits and so fewer digits are required to represent longer binary

values. This means it is easier to remember, enter in/type and reduces the chance of errors or loss of integrity.

They are also used since converting to and from Hexadecimal and binary is easy.

Converting Hexadecimal to Denary
E.g. 0 1 2 3 4 5 6 7 8 9 A B C D E F (16 values all together)

 165 164 163 162 161 160

HEX # 0 0 F C E C

Decimal: (15*163) (12*162) (14*16) (12*1)

Decimal: 6,368,780

A = 10

B = 11

C = 12

D = 13

E = 14

F = 15

More appropriate example for an exam:
What is F4 in decimal?

 161 60

HEX # F 4

Calculation: (15*16) + (4*1)

Decimal = 244

 X 10 6
10 100 60
5 50 30 Sum = 240 + 4 = 244

(In the real world, Hexadecimal numbers start with a pound sign (or hashtag), and are followed by
six letters or numbers)

Converting Denary to Hexadecimal
For denary numbers less than 255 (since 2 Hex digits in questions can only represent up to 8 bits).

If the number is greater than 16 then we will divide it by 16 and ignore any remainders. The result
will be the most significant digit of the Hex value. The remainder will then form the least significant
digit.

Example 1) 77 (77/16 = 4 remainder 13 (13 = D) SO 4D
Example 2) 124 (124/16 = 7 remainder 12 (12 = C) SO 7C
Example 3) 11 (11/16 does not go (hence 0*16 = 0) remainder 11) SO = 0B

Note: Since conversion between Hex and binary is so easy, hard arithmetic can be
avoided by converting the denary to binary then to Hex. (refer to the below)

Converting Binary to hexadecimal
If there is a binary value (say 8 bits), it is split into 2 nibbles (4 bits each). Each nibble is then converted to
a denary equivalent, and then to a hexadecimal value - but ignoring that the most significant digit
represents a given number of 16’s (i.e. all digits are treated as 160) .

For example, convert 10010110 to Hexadecimal

1 0 0 1 0 1 1 0

8 0 0 1 0 4 2 0

= 9 = HEX #9 = 6 = HEX #6

Hexadecimal = 96

Hexadecimal to binary
For a simple digit hex value, split into the two digits. Then convert each of the digits in to a denary
value and then into a nibble (4 bit binary value). Once the two nibbles are obtained, join them
together remembering to put the most significant before the least significant.
For example, convert DE into binary
DE D & E. D = 13 E = 14

 23 22 21 20 23 22 21 20

1 1 0 1 1 1 1 0

Joining
nibbles:

= 1101110

Example 2) 01001011 = 0100 and 1011 so 0100 = 4 and 1011 = 11 (B) so when joined together = 4B

Example 3) 11001001 = 1100 and 1001 so 1100 = 12 (C) and 1001 = 9 so when joined = C9

