Linear searching in python

& *Linear searching.py - D:\Computing 02.12.16\Mrs Berry\Python Programming\recent\Using arrays\Linear searching.py™

File Edit Format Run Options Windows Help

#Linear zearching

li=t0l = ["zaples", "bkananas", "choc", "pasta"] #Fglobal li=st
main_linear proc(): #Not using functions
print ("Item=s in the list 2 ", list0l)
search item = str(input ("Enter name of item you want to find: "))
found = #Boolean wvalue
posicion = 0
(position < len(list0l)) i found) : #not found just means found = false
listOl[position] == search item:
found =
print ("Found item at position™, position, "\n")
position = position + 1
found:
print ("Item not found in listin")

main linear proc()

Using functions for the same algorithm

main linear proc?(): fFusing functions
func_search (search item,1ist0l):
found = #Boolean wvalue
position = 0 #starting position of lis=st
(position < len(li=st0l})) (list0l[position] !'= search item): #fi.e. not found
position = position + 1 # Item i=2 not found, position adds 1
posgition < len(li=st0l):
found = #item found, so found changes to True
(found, position) #returns two values: state of found (T/F) & position as li=st
FFFoetuD
print ("\tUsing functions: “n")
print ("\nItem= in the list are: ", li=t0l)
search item = str({input("Enter name of item you want to find: "))
(found,position) = func search(search _item,1ist0l) #Ffrun func to get two values
found ==
print ("Item has been identified in the listc™)
print("Item is at index position: ", position) #Ftaking 0 as start
print ("The item was never found"™)

#loop=s program

response = "yn"
response == "y,
main linear proc ()
response = str(input("\nContinue? (v/n)"))
response = response.upper ()

Linear searching will start at the first element and compare each element in the list with the target value.
Once the item is found the iteration stops and the position stated, if the end of the list is reached without
the target value being identified then the search stops.

Linear searching is useful for searching a list with a small number of elements or a list that
only has to be searched once. It is considered less efficient than binary searching since
every element in the list must be checked unit the item found. In the worst case scenario,
the item may be the last element in the list so there are many unnecessary comparisons/
iterations made. A big advantage of linear searching is that it works even when the list is
not ordered since every element will be checked regardless of the order, until the item is
found or end of list is reached.




Binary searching in python

#Binary searching

func binary search(search item,li=t0l):

lower = 0 #equals first position in list
upper = (len(list0l) - 1) F since we want last position not full length (it begins at 0)
found =
(found == )] [lower <= upper):
mid = int((lower+upper)//2) # the middle position (full length-1 diwvided by 2 (same as a%b whole integer division)
1list0l[mid] == search item:
found = # ITEM FCOUND, breaks the while

1li=t0l[mid] > zearch item:
upper = (mid - 1) #the end of the list is now element below middle item
H # list0l[mid] < search item:

lower = mid + 1

found F(I/F)

Fardetup
list0l = [1,2,3,4,5,6,7,8,9,20,34,40,45,46,47,48,50,70,90,100] #ordered integer list

print ("\nItems in the list are: ", list0l)

search item = int (input ("Enter the integer of the item you want to find: "))
(search_item > list0l[len(list0l)-1]) (search_item < 1i=t01[0]): #item not in range of list at all
print ("The integer entered is not within range of 1listc") #we immediately know it is not in list
found =
found = func binary search(search item,list0l) #frun function to obtain position

print ("\nItem in li=c:", found)

#loop=s program
response = "Y"
response == "Y":
main binary search()
response = str(input ("\nContinue? (v/n) "))
response = response.upper()

Binary search is an efficient searching algorithm for finding an item within an ordered list.
It works by repeatedly comparing the middle item of the list with the target value, and if
it is not equal, the list is divided in half. The portion of the list that could contain the
value is amended as the new list. The process repeats until the possible location of the
item is narrowed down to one. This is then compared to target value.




