Karnaugh maps

Karnaugh maps are used to facilitate the simplification of Boolean algebra functions

Expression A V B					
A				A	A
B		0	1		
	B	0	0	1	
B	1	1	1		
Simplified: The expression is A is true or B is true, $\mathrm{A}=1$ or $\mathrm{B}=1$					

We place a rectangle around any pair with two 1's in it. The rectangle's heading e.g. $A 1$ will give the statement $A=1$ and the row, say $B 1$ will give statement $B=1$. St combined it would be $A=1$ AND/OR (depending on original expression) $B=1$

Here we separate the expression by the OR's. We get left side $A^{\wedge} B$ with right side $A^{\wedge} \neg B$. We put each part into the expression.

Simplified: The expression is B is False or A is true, $\mathrm{B}=0$ or $\mathrm{A}=1$

Simplified: The only place a rectangle can be drawn is when A is true and so, expression $=A(A=1)$

Here we can only put a rectangle around B 0 row and A 1 column. Expression is therefore $B=0$ or $A=1$.

Expression $\neg C^{\wedge} \mathrm{B} V \mathrm{~A}^{\wedge} \mathrm{B} V \mathrm{C}$					
	AB	AB	AB	AB	AB
C		00	01	11	10
C	0	0	1	1	0
C	1	1	1	1	1
Simplified : A V B					

