
Adam Suttle Year 12

Using Lists (Arrays) Notes - 27.11.16

Array/List = a data structure that allows for multiplied items or elements to be stored using

just one variable name.

Each element in a list is accessed using an index position. It is convention that lists begin at 0

and go up to the specified domain.

Creating and displaying a list in python

Empty lists to be filled later:

List_nums = [int] * 8

 # the multiplication will set the list length (create in this case 8 cells/element positions) and

integer shows that the list will store integer data types only.

List_names = [string] * 8 # 8 entities of strings like first names

List_nums = [float] * 8 #8 entities of real numbers

To fill the entities in a list we can use such things as for loops:

For x in range (0 , len(list_names)): #len() gives length of list

 list_names[x] = string(input(“Enter your first name: “))

To display all the results of a list we don’t require index positions i.e.

print(list_names)

….unless we want to specifically output an entity i.e. print(list_names[3])

To create a random list of numbers we do the following:

Import random

For i in range (0, len(my_list)):

 my_list[i] = random.randint(1,100) # random integer between 1 and 100

Declaring a list where we know the pre-set elements

shopping = [`milk’, `bread’, `eggs’, `cheese’, `cereal’]

print(shopping)

print(shopping[2])

Slicing a list

shopping = [`milk’, `bread’, `eggs’, `cheese’, `cereal’]

Adam Suttle Year 12

 print(shopping[:3])

This will output the first 3 items - i.e. elements: 0, 1 & 2 or “milk”, “bread”,

“eggs”

 print(shopping[3:])

This will output the items from the 3rd element to the end, i.e. 3 & 4 or

“cheese”, “cereal”.

 print(shopping[1:4])

This will output the items from the 1st element up to but not including the 4th

i.e. 1,2, 3 or “bread”, “eggs”, “cheese”.

 print(shopping[:-1])

This will output all the items except the last 1 elements i.e. 0,1,2, 3 or “milk”,

“bread”, “eggs”, “cheese”.

 print(shopping[-2:])

This will only output the last 2 items i.e. 3,4 or “cheese”, “cereal”

 My arrays months program

Manipulating lists

 Adding two lists (this means join, the process is called Concatenation)

e.g.

Adam Suttle Year 12

 Sorting lists numerically or alphabetically

List_nums = [12,8,3,22,0]

List_nums = List_nums.sort()

Print(list_nums)

>> 0 3 8 12 22

The `.sort() function’ will sort the items in the list into numerical order (lowest to highest) by

rearranging the items’ index positions.

The same .sort() function can be used to sort numerically floating point lists. Moreover it

can be sued to order a list of strings into alphabetical order. E.g….

List_names = [Joe, Craig, Sam, Bob, Aaron]

List_names = List_names.sort()

Print(list_names)

>> Aaron Bob Craig Joe Sam

 Multiplying lists. This will cause reputation of elements.

List_names = [Joe, Craig, Sam]

List_names = List_names * 3

Print(list_names)

>> Aaron Joe Craig Sam Joe Craig Sam Joe Craig Sam

It will duplicate the list by the number which it is multiplies by. We can only ever multiply by

whole integers not floats (we must use techniques of slicing if we say 1½ of the list).

The same thing occurs with a list of integers/floats

List_nums = [2.5, 11 , 6.6]

List_nums = List_nums * 3

Print(list_nums)

>> 2.5, 11 , 6.6, 2.5, 11 , 6.6, 2.5, 11 , 6.6

 My manipulating lists program

Adam Suttle Year 12

Source Code

Adam Suttle Year 12

Adding the elements within a list (sum function)

The sum() function will add all the items of the lists and give the output as one result.

e.g list_of_numbers = [1,2,3,4]

 list_of_numbers = sum(list_of_numbers)

 print(list_of_numbers) >>> 10

Joining elements of a list

The “”.join function can be used if we want to join strings in a list and the item within the

speech icons will be what is placed between each of the elements in the list.

e.g.

>>>

Inserting into a list

The .insert(,) function will insert the element specified after the comma into

the index position specified by the number on the left side of the comma.

e.g. my_list.insert(2,”hello”) will insert “Hello” into the list at index position

2. The previous element of index position 2 is not deleted as all the elements

are shifted along by 1 (list length is increased).

Adam Suttle Year 12

Adding an item to the end of a list (Append)

The .append() function will add the element specified in the bracket onto the end of the list.

e.g. my_list = my_list.append(“Hello”) >>> item1, item2, item3, Hello

Finding the length of a list (len() function)

len(my_list) >>> returns the length of the list (number of elements)

Reversing a list

The .reverse() function is used when we want to reverse the list so all the index

positions are swapped to other end.

>>>

Checking whether an item is in the list
The in operator is used to check if the value given on the left side is present any of the

elements in the list. For example,

Adam Suttle Year 12

Checking the position of a single item in a list

We use the .index() function to find the index position of an item in a list. The

brackets is filled with the item we want to locate.

Deleting an item from the list

The .remove() function will delete the first occurrence of the item specified

from your list and so decrease list length.

Adam Suttle Year 12

Adam Suttle Year 12

Escape Sequences

Adam Suttle Year 12

Creating a menu

Creating a game inventory (needs amending due to errors)

Adam Suttle Year 12

