## BOOLEAN ALGEBRA EXAMPLE 1

## Simplification from a truth table

| Inputs |  |  |  |
| :--- | :--- | :--- | :--- |
| A | B Output |  |  |
| 0 | 0 | $C$ | D |
| 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 |

From this truth table we can write a Boolean expression.
Step 1: $\quad$ Look at the values of inputs when the output is 1

## A ' 0 ' input means NOT $x$ and an input of ' 1 ' means $x$ where $x$ is the letter from the input.

SO

| $\neg A^{\wedge} B^{\wedge} \neg C$ | $\neg A B \neg C$ | Notice that we can either use <br> the signs $V$ (or) or + <br> interchangeably. And |
| :--- | :--- | :--- |
| $\neg A^{\wedge} B^{\wedge} C$ | $\neg A B C$ | multiplying is the same as $\wedge$ <br> (and) |
| $A^{\wedge} B^{\wedge} \neg C$ | $A B \neg C$ | $A^{\wedge} C$ |

Step 2: So the sum is $\neg A B \neg C+\neg A B C+A B \neg C+A B C$ (now simplify with Boolean algebra techniques) or we can write this as $\left(\neg A^{\wedge} B^{\wedge} \neg C\right) \vee\left(\neg A^{\wedge} B^{\wedge} C\right) \vee\left(A^{\wedge} B^{\wedge} \neg C\right) \vee\left(A^{\wedge} B^{\wedge} C\right)$ Factor out $\neg A B$ so $\neg A B(\neg C+C) \quad+$ Factor out $A B$ so $A B(\neg C+C)$

Since anything that is not itself or itself is always 1 it eliminates: $\neg A B+A B$
Factor out $B$ so $B(\neg A$ or $A)$
Since anything that is not itself or itself is always 1 it eliminates: $B$
Hence the entire truth table is equal to the expression: B

## KARNAUGH MAP EXAMPLE 1

A Karnaugh map is similar to a truth table in the fact it as a box input for every possible input. However, the karnaugh map the column headings only change by 1 bit.
e.g. for the same logic algorithm:

Notice that the column heading goes $00,01,11,10$. This pattern is used to ensure that we are only changing 1 bit when looking across a period. So for ( $c 1, r 1$ ) $A=0 B=0 C=0$ but for ( $C 2, r 1$ ) A = 0 still \& $B=0$ still but $C=1$ (only 1 bit changes) etc. Similarly, if we move down a row for a particular column, it is only $A$ that changes.

The first variable (A) goes in the left row heading, and both of the inputs are combined in an AND (^) expressions, BC.

| $A B C$ | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 0 |  |  |  |  |
| 1 |  |  |  |  |

We place the outputs (from previous truth table) in the corresponding fields.

| BC | 00 | 01 | 11 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 |

I have colour coded them so you can see how they match up.

## Using a karnaugh map to determine the simplest expression

Step 1: Build Karnaugh map
Step 2: Draw a square or a rectangle to combine outputs of 1 (these can be called "minterms") Here are the rules for doing this.....
2) Combine minterms (where minterm =1) into groups
a. Group size is a power of 2 (i.e., $1,2,4,8,16$...)
b. Group shape is square or rectangle
c. Make groups as large as possible
d. Groups can overlap
e. Groups can stretch around boundaries
f. All boxes where minterm $=1$ need to be in a group

| Rule | Explanation |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | e.g. We can't have a group with 3 minterms |  |  |  |  |  |  |  |  |  |  |
| B | Must look like a square or rectangle (encompasses only minterms) |  |  |  |  |  |  |  |  |  |  |
| C | Make the groups as large as they can (without crossing other 0's |  |  |  |  |  |  |  |  |  |  |
| D | Th <br> 1 <br> 1 <br> 1 | ns 0 1 | ip | up | y | e.g |  |  |  |  |  |
| E | This means that a column at the side is really adjacent to the column on the other side. E.g. just remember to move the correct column headings |  |  |  |  |  |  |  |  |  |  |
|  | 1 | 0 | 0 | 1 | 1 | = | 0 | 0 | 1 | 1 | 1 |
|  | 1 | 0 | 0 | 1 | 1 |  | 0 | 0 | 1 | 1 | 1 |
| F | Every box with a minterm (1) must belong to a group. |  |  |  |  |  |  |  |  |  |  |

So in our example


Step 3: Determine the common value of the group. This means what variable has the same value in all of the boxes in the group. In our case $B$ is always $=1$ but $A$ and $C$ vary in the group. So the value is B =1

In our example, there is just one group but it is possible to have multiple groups and so multiple of these expressions.

Step 4: Determine an expression for each group: we look for the variable and if it equals 1 then the expression is just that variable but if the variable is equal to 0 then it is NOT that variable. Say if B was always equal to zero it would be NOT B.

In our case B=1 so expression is B

Step 5: Do the same for all the other groups
Step 6: Add all the expressions together and simplify.

## KARNAUGH MAP EXAMPLE 2

From this truth table, determine the simplest possible Karnaugh map and write an expression for the logic operation.

| A | B | C | OUT |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

ANSWER


Notice that we cannot form a box with 3 minterms (1's in) as we can onty have powers of 2
( $1,2,4,8 \ldots$...) This means to encompass all whiel using a minimum number of boxes we need 3 boxes.

| Group value | Expression (1 = term and $0=$ not term) |
| :--- | :--- |
| Group gold: Common value is $\mathrm{B}=1$ AND $\mathbf{C = 1}$ | $\mathbf{B}^{\wedge} \mathbf{C} \quad$ (can be written as BC ) |
| Group red: common value is $\mathbf{A = 1} \mathbf{A N D ~ B = 1}$ | $\mathbf{A}^{\wedge} \mathbf{C} \quad$ (can be written as AC ) |
| Green box: common value is $\mathbf{A = 1} \mathbf{A N D} \mathbf{C = 0}$ | $\mathbf{A}^{\wedge} \neg \mathbf{C}$ (can be written as $\mathrm{A} \neg \mathrm{C}$ ) |

## Summing the expressions (i.e. add means or)

So.... $\quad\left(B^{\wedge} C\right) V\left(A^{\wedge} B\right) \quad V\left(A^{\wedge} \neg C\right)$
$B^{\wedge}(C \vee A) V\left(A^{\wedge} \neg C\right)$

## This is already in its simplest form?

## Recapping some simple rules

$(A \wedge B) V \neg C$
Order of precedence: NOT, AND then OR
$A^{\wedge}-A=0$
$A \vee \neg A=1$

