BOOLEAN ALGEBRA EXAMPLE 1

Simplification from a truth table

Inputs			Output
А	В	С	D
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

From this truth table we can write a Boolean expression.

Step 1: Look at the values of inputs when the **output is 1**

A `0' input means NOT x and an input of `1' means x where x is the letter from the input.

SO

¬A ^ B ^ ¬C	¬АВ¬С	Notice that we can either use
¬A ^ B ^ C	¬ABC	the signs V (or) or +
A ^ B ^ ¬C	АВ¬С	interchangeably. And
A ^ B ^ C	ABC	multiplying is the same as ^
		(and)

Step 2: So the sum is $\neg AB\neg C + \neg ABC + AB\neg C + ABC$ (now simplify with Boolean algebra techniques) or we can write this as $(\neg A \land B \land \neg C) \lor (\neg A \land B \land C) \lor (A \land B \land \neg C) \lor (A \land B \land C)$ Factor out $\neg AB$ so $\neg AB(\neg C + C) + Factor out AB$ so $AB(\neg C + C)$

Since anything that is not itself or itself is always 1 it eliminates: ¬AB + AB

Factor out B so $B(\neg A \text{ or } A)$

Since anything that is not itself or itself is always 1 it eliminates: B Hence the entire truth table is equal to the expression: B

KARNAUGH MAP EXAMPLE 1

A Karnaugh map is similar to a truth table in the fact it as a box input for every possible input. However, the karnaugh map the column headings only change by 1 bit.

e.g. for the same logic algorithm:

Notice that the column heading goes 00, 01, 11, 10. This pattern is used to ensure that we are only changing 1 bit when looking across a period. So for (c1,r1) A = 0 B = 0 C = 0 but for (C2, r1) A = 0 still & B = 0 still but C = 1 (only 1 bit changes) etc. Similarly, if we move down a row for a particular column, it is only A that changes.

The first variable (A) goes in the left row heading, and both of the inputs are combined in an AND (^) expressions, BC.

ABC	00	01	11	10
0				
1				

ABC	00	01	11	10	
0	0	0	1	1	
1	0	0	1	1	

I have colour coded them so you can see how they match up.

Using a karnaugh map to determine the simplest expression

Step 1: Build Karnaugh map

Step 2: Draw a square or a rectangle to combine outputs of 1 (these can be called "minterms") Here are the rules for doing this.....

- 2) Combine minterms (where minterm = 1) into groups
 - a. Group size is a power of 2 (i.e., 1, 2, 4, 8, 16...)
 - b. Group shape is square or rectangle
 - c. Make groups as large as possible
 - d. Groups can overlap
 - e. Groups can stretch around boundaries
 - f. All boxes where minterm = 1 need to be in a group

Rule	Explanation										
А	e.g. We	can't h	ave a gr	oup wit	h 3 min	terms					
В	Must lo	ok like a	a square	or rect	angle (e	encompasses of	nly mint	terms)			
С	Make th	ne grou	os as lar	ge as th	iey can	(without crossi	ng othe	r 0's			
D	This means multiple groups may form e.g. an L shape										
E	This means that a column at the side is really adjacent to the column on the other side. E.g. just remember to move the correct column headings										
	1	0	0	1	1	=	0	0	1	1	1
	1	0	0	1	1		0	0	1	1	1
F	Every box with a minterm (1) must belong to a group.										

So in our example

ABC	00	01	11	10
0	0	0	I	17
1	C	0	1	1

Step 3: Determine the common value of the group. This means what variable has the same value in all of the boxes in the group. In our case B is always = 1 but A and C vary in the group. So the value is B = 1

In our example, there is just one group but it is possible to have multiple groups and so multiple of these expressions.

Step 4: Determine an expression for each group: we look for the variable and if it equals 1 then the expression is just that variable but if the variable is equal to 0 then it is NOT that variable. Say if B was always equal to zero it would be NOT B.

In our case B = 1 so expression is B

Step 5: Do the same for all the other groups

Step 6: Add all the expressions together and simplify.

KARNAUGH MAP EXAMPLE 2

From this truth table, determine the simplest possible Karnaugh map and write an expression for the logic operation.

A	B	С	OUT
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

ANSWER

Notice that we cannot form a box with 3 minterms (1's in) as we can only have powers of 2 (1,2,4,8...) This means to encompass all whiel using a minimum number of boxes we need 3 boxes.

Group value	Expression (1 = term and 0 = not term)
Group gold: Common value is B= 1 AND C =1	B^C (can be written as BC)
Group red: common value is A = 1 AND B = 1	A ^ C (can be written as AC)
Green box: common value is A = 1 AND C = 0	A ^ –C (can be written as A–C)

Summing the expressions (i.e. add means or)

So.... (B ^ C) V (A ^ B) V (A ^ ¬C)

B ^ (C V A) V (A ^ ¬C)

This is already in its simplest form?

Recapping some simple rules

 $(A \land B) \lor \neg C$ Order of precedence: NOT, AND then OR

A ^ <mark>¬A = 0</mark> <mark>A V ¬A = 1</mark>