Adam Suttle Half term H/W October 2016

Variables

Definitions

e Avariable is a place in the memory dedicated to storing a value which has the ability
to change, throughout the execution of a program, depending on certain conditions
or information passed into the computer system.

e A constant is a place in the memory which is dedicated to storing a value that is fixed
and assigned in the code.

e Scope relates to the sections of source code where the variable is defined. Variables
can be global or local.

o Identifiers: The unique names assigned to variables & constants as a way of
identifying them.

Declarations
e Avariable can change through the execution of the program due to a line of code
that alters its value. The assignment overwrites the previously stored value.
e Declarations are named constants/variables that also determine the data type and
where it will be stored in the memory.

Identifiers

These can be made unique in two different ways:

1) Using unique names in their declaration

2) Utilising different scopes within the program. These rules determine where an
identifier is defined. Local variables/constants are only defines by their identifier
within the function they are created in. Conversely, the global variables/constants
given an identifier are defined all through the program.

The scope of variables

e Local variables are variables that are created within, and will only operate in a
section of code/sub-routine (e.g. a loop, procedure, class). They are created when
the routine is called and destroyed when it ends.

..... Variables are declared within a function when they are only needed for use within that
routine.

e Global variables are variables that are created outside of sub-routines, visible and so
accessible to any part of the code within the program. They are created when the
program starts and destroyed when it ends.

..... Variables are to be defined globally only if they are required to be accessed all through
the source code and do not conflict with any identical identifiers.

Programs can be safely divided into components where the identifiers within are only
specific to that division of source code. This prevents conflicts between different parts of
programs/other programs being executed ; the same names for identifiers can be used in
different places to refer to different things. These types of identifiers have a module scope:
only being defined throughout a single module or file.

