

Data capture
Before you can create a database, you need to collect data. This
is known as data capture. One of the most common ways is to
use and optical mark reader (OMR).

An OMR sensor is used for marking multiple choice tests and for
collecting the results of surveys or questionnaires. The user fills
out a form, usually by shading in the box they wish to select.
The OMR shines a light at the paper and as the shaded mark will
reflect less light than empty boxes, signals are sent back to the
computer system that identifies which box has been shaded. An
algorithm interprets this so can work out which box is selected
and the information stored in a database.

An alternative to an OMR is an OCR (optical character recognition). Optical character readers are used to
convert paper-based hardcopies of text into digital, editable copies of the same document. Alternatively, they
are used so a computer can identify and interpret handwritten text.

They work by scanning a hardcopy document and storing a picture. The optical character recognition software
looks at each individual character and compares it to a database of characters to look up the possible value.
Some algorithms work by pattern recognition and feature detection of characters. Once a match is found, the
equivalent ASCII value is placed in a digital file.

A Flat file database

A flat file database consists of just one file/table.

It is suitable for storing smaller sets of data such as all the names and addresses of people at a sports club or all
the information about a personal DVD collection.
The main problem with these databases is that the larger they grow the more data becomes redundant. Data
redundancy simply means having lots of replicated unnecessary data.

Most databases, however are about more than just one entity. There are multiple relationships between the
entities. For example, in a database about DVDs, you may wish to keep data on which of the main actors starred
in each film. The actor would be a second entity alone.

e.g. A Dentist’s surgery with multiple dentists may have a system that allows patients to book appointments.
Entities’ in the system are: Dentist, Patient, Appointment.

 The attributes of Dentist are: Title, First name, Surname, Qualification, Age, Surgery name.
 The attributes of Patient are: Title, First name, Surname, Date of birth, Address, Telephone, Medical

conditions, Teeth on watch, Dentist history.
 The attributes of Appointment are: Dentist, Patient, Date, Cost, Time, Specific requirement

Problems with a flat file database (data redundancy)

 If an item of data becomes outdated or needs to change then data redundancy may mean that the data
has to be changed in numerous locations. This is not only time consuming but also means that it is easy
to miss a record in the database. This leads to a loss of data integrity (data not reflecting the real
world). This, in turn, could lead to legal problems with the Data Protection Act.

Moreover, if we wanted to store extra information (another attribute) and there is data redundancy,
the same data will have to be entered in numerous times. This increases the probability of entering
invalid/inaccurate data by mistake.

Databases

 Database: An organised collection of data held in a computer system, especially one that is accessible in
various ways.

 A relational database = a collection of tables in which relationships are modelled by shared attributes.

 A relation = A set of attributes and records, modelling an entity (a table).
Data is stored in tables (called relations) and modelled by shared attributes.

Databases store data in tables like the one below……

 A table = a data structure that stores all the records for a particular category or person.

 A field = One specific piece of information about an entity. (i.e. the title of a column).

 Attribute = The properties, facts, details of characteristics which represent that entity (named column in table)

 A record: all of the data or information about one person or thing. Records stored as rows (horizontal).

 Small databases have very few records compared to a large company which has thousands to millions of records.
e.g.

Data is stored in the tables in records (rows), that can be divided into fields (columns). Each table must have its
own primary key and name.

Relational databases arrange data as sets of tables with linked or shred attributes through primary and foreign
keys.
The tables contain records (horizontal rows).
Each record consists of several fields; the fields of all records form the columns. Examples of fields: name, gender,
hair colour.

e.g.

Conceptually, one row of a table holds one record.
Each column in the table holds one attribute (with
many records of data about it).

Database concepts

When a systems designer begins to work on a new proposed computer system, one of the first things
they need to do is to examine the data that needs to be input, processed and stored and determine
what the data entities are.

Entity = A category of object, person, event or thing of interest to an organisation about which data

(attributes) are to be recorded.

Examples of such entities are Film, Actor, Product, Recipe, Ingredient and each entity has attributes.

Entity Descriptions

An entity description is usually written with the format:
Entity1 (Attribute1, Attribute2, ……..)

e.g. entity description for Appointment would be……..
 Appointment: Appointment(AppointmentID, Dentist, Patient, Date, Cost, Time, Specific requirement)

AppointmentID = Primary Key

Entity identifier and primary key
Each entity requires an entity identifier to uniquely identify the entity. In a relational database, this is called a
primary key. So far, none of the attributes of the entities identified so far (Dentist/Patient/Appointment) would
be suitable. A unique ID such as D13649 should be used.

o We use a numeric code or string
o In the entity description, the primary key is underlined.

Relational database keys

In a relational database, a separate table is created for each entity identified in the system. Where a relationship
exists between entities, an extra field (column) called foreign key links the two tables.

Relationship = when tables within a database are related/linked so data can be accessed between them. One table

has a foreign key that references the primary key of the other table.

A primary key is composed of one or more attributes that uniquely identify a particular record in the table (when
describing an entity, this is called an entity identifier).

A foreign key is an attribute that creates a link between two tables. It is the attribute that is common to both tables
and is used as a primary key in the other table it uniquely identifies.

A secondary Key (indexing) (a secondary key may not be unique to record)
In order that a record with a particular primary key can be quickly located in the database, an index of primary keys is
maintained by the database software. This will give the position of each record according to its primary key.

One or more secondary indexes may be needed when the database is created, this is the case for any attribute that
is often used as search criteria. E.g. Author and Title in a database that uses BookIDs as the primary key may be used
as secondary keys. This would speed up searches on either of these fields, which would otherwise be searched
sequentially.

e.g. A patient is unlikely to know their patientID so a secondary index (e.g. surname) is likely.

Indexing = An index is a data structure used to shorten the length of time it takes to search a database.
It allows the user to gain access to specific records that are indexed in a file.

 For example, the index might contain the ‘surname’ column of a database or even the column of
primary keys. This would mean that when you are searching for a student, if you know their surname
or primary key (StudentID) , you can find the information you want much faster than if you were to
sequentially sort through all the items. This is similar to a contents page. Sometimes you may not know
the primary key but you do know the surnames of the students so you can use the index table (or
indexing software) to quickly jump to the correct record.

Linking database tables:

Tables are linked through the use of common attributes. The attribute must be the primary key of one of the tables,
and is known as a foreign key in the secondary table.

Relationships between entities

The different entities in a system may be linked in some way, and the two entities are said to be related.

 One-to-one (1:1): When one table (entity) is related to another using a common attribute as a primary and
foreign key.

 Examples include the relationship between a Husband and Wife or Country and Prime Minister .

 One-to-many (1:n): When one table (entity) is related to multiple other tables (entities). This means that the (an

attribute) primary key of the main table is used as a foreign key in multiple other tables (common attribute to
many).

 Examples of relationships include Mother and Child, Customer and Order, Borrow and Library Book.

Head teacher School

Dentist Patient

In charge of

treats

Linking tables in a many-to-many relationship

In this data model, we can’t simply link two tables in a many to many fashions.
An extra table is used linking say a Student and Course table. We could call this StudentCourse or Enrolment.

The primary key of the Student table and of the Course table become foreign keys in the third enrollment table.
They form what is known as a composite primary key.

Composite primary key = a primary key consisting of more than one attribute.

For the relationship between Student and Course: A student takes many courses that are also taken by many other
students.
In this case an extra table (e.g. Enrolment) is needed to link the two tables.

The three tables could be described as:

 Student (StudentID, Name, Address)
 Enrolment (StudentID, CourseID) The composite key consists of two attributes StudentID, CourseID
 Course (CourseID, Subject, Level) NOTE: Entity name is held outside of these brackets

Drawing an entity relationship diagram

Databases will regularly have many entities linked together so an entity relationship diagram is used to show all
relationships.

e.g. A hospital inpatient system may involve the entities Ward, Nurse, Patient, Consultant.

A ward is staffed by many nurses but each nurses only staffs only one ward. A patient in a ward has many nurses
looking after them and only one consultant that looks after them. The Consultant sees many patients on many
wards.

Student Course
takes

Student

Enrolment Course

Ward

Nurses

Patient

Consultant

Referential integrity

Imagine a database with entities Product and Component
It is important that when the tables are linked, a particular component is not deleted if it is used in a product in the

Product table. This is known as referential integrity.

Normalisation

#Normalisation = a process used to devise the best possible design for a relational database.
#Normalised entities = a set of entities that contain no redundant data
#Referential integrity = If a value appears as a foreign key in one table then it must be a primary key of another
table.

Tables should ideally be organised in such a way that: LEARN THESE 4 POINTS

1. No data is unnecessarily duplicated (i.e. same data held in more than one table)
2. Data is consistent throughout the database (e.g. customer is not recorded as having different addresses in

different tables of the database). Consistency should be an automatic consequence of not duplicating
data. This means that no anomalies will arise when data is inserted, amended or deleted.

3. The structure of table is flexible enough to allow you to enter as many or as few items for an attribute in a
record as required.

4. The structure should enable a user to make all kinds of complex queries relating to data from different
tables.

The main disadvantage with relational databases is that they
are more complicated to create and maintain

Examiner tips

The 'Many' side is usually the foreign key

The 'One' side is usually the primary key

Before you design or set up a database, you should work out:

- the entities

- the attributes

- the entity relationships

This process is called 'data modelling'

The relational database was

invented by Dr Edgar F. Codd in

1970.

Normalisation of a database

A serial database: Serial means that the data is in an ordered structure

Sequential means the database is ordered by a particular field. E.g. ordering a
database of people by surname (alphabetical)

First normal form

Rule 1: Eliminate duplicate columns from the same table and each field/column has
one piece of data.
Rule 2: Create separate tables for each group of related data (all attributes dependant
on primary key)
Rule 3: Identify a column or combination that will uniquely identify each of the
records in a table. i.e. Define and create primary keys in each table.

Second normal form

Rule 1: Check the data is in first normal form.
Rule 2: Remove any data sets that occur in multiple rows and transfer them to new
tables.
Rule 3: Only at second normal form will the relationships be created between the
separate tables (old and new) by means of a foreign key.

Third normal form

Rule 1: Check the data is in second normal form.
Rule 2: Remove any columns that are not dependent on the primary key.

To remove a many-to-many relationship it is necessary to insert another entity (sometimes called a linking entity)
that breaks the relationship into two one-to-many relationships.

SQL language

You need to be able to retrieve the data from a database. This is done through querying the database.

A query = A search on the database allowing specified data to be extracted. Results are returned in the form of a
new table or a report.

In the early computing days, there were many different databases that each had a different way to query it. This
meant it was difficult to transfer skills from one database to another. There was no standardisation so
developers were locked into specific database implementations. SQL became the standard for querying a
database.

SQL = structured query language.
A query written in SQL is sent to a database query engine as plain text.

How do we select data
We use the command “SELECT ………..” to retrieve either a record, column (field) or an entire table.
e.g. let Students be a table in a database

How do we narrow our selections
We can use the “WHERE …” command which will always come after the SELECT command.

How do we sort our selections
We can use the “ORDER BY” command to order the output. This will come after the FROM or WHERE commands.

We write: ORDER BY field (to determine order) DESC

If we leave out DESC then it will automatically order ascending. We can just write ORDER BY field

SQL Description Result

SELECT StudentID FROM Students This will retrieve the entire student
ID column

ST6, ST7, ST8

SELECT * FROM Students * Means retrieve all items Students table

SELECT * FROM Students WHERE
StudentID = “ST7”

This will retrieve all the items of the
record ST7. It is defined by the
primary key ST7

ST7, Charlotte, 12/05/2000, F,
CA80GH

SELECT * FROM Students WHERE Gender
= “F”

This returns all records where the
gender is female

ST7 and its fields
ST8 and its fields

SELECT Studentname, DOB FROM
Students WHERE Gender = “F”

This returns the student name and
date of birth for all the female
students.

Charlotte, 12/05/2000
Julie, 03/10/2000

SELECT Studentname FROM Students
WHERE gender = “F” ORDER BY DOB
DESC

This selects the students names who
are female and it will display them in
order of their date of birth
descending

Julie
Charlotte

How to create a table

We use the command:

 CREATE TABLE table_name
 (
 PrimaryKey VARAIBLE,
 field1 VARAIBLE,
 field2 VARAIBLE,
 field3 VARAIBLE
)

How to remove from a table

We use the command:

 DROP table_name
This will delete the table and all of its contents

It is also common practice to start a new line when using a new operator. E.g. SELECT *

 FROM Students

What variable type to use for each field?

Data type Description Example

CHAR(n) Character string of fixed length n ProductCode CHAR(n)

VARCHAR(n) Character string of variable length, max, n ProductName VARCHAR(n)

BOOLEAN TRUE or FALSE ReviewComplete BOOLEAN

INTEGER, INT Integer values Quality INTEGER

FLOAT (n,d) Real numbers (floating point decimal) with
max of n digits and d decimal places

Length FLOAT (10,2)

DATE Dates in format dd/mm/yyyy HireDate DATE

TIME Stores hour, minute, second values RaceTime TIME

CURRENCY Formats the numbers in the currency used in
your region (£pp.dd)

EntryFee CURRENCY

How to insert items into a table just created or an existing one

SQL also lets you add records using the INSERT INTO…. VALUES…. command.

INSERT INTO table_name
(PrimaryKey, field1 ,field2, field3)
VALUES
(“id1”, “V1”, “V2”, “V3”, PRIMARY KEY(id1))

Be aware that when inserting a record you must include a value for the primary key (in this case StudentID). If
you try to insert a new record with the same primary key as an existing record, the database will reject the query.

SQL Description

CREATE Students(Student ID
CHAR(3), Student name
VARCHAR(12), DOB DATE,
Gender CHAR(1), Postcode CHAR
(7), PRIMARY KEY(Student ID))

This will create a new table called students. The primary key is student id
and is a string of fixed length (3 characters). Likewise, Student name is a
field that is a variable string of maximum length 12 characters. DOB is a field
of dates. Gender is a field of strings of fixed length 1 character. Postcode is a
field of strings of fixed length 7 characters. We have to define primary key
at the end. We can also define foreign keys here. Note these will have
already been mentioned in this list.

DROP Students Removes the student table and all items

INSERT INTO Students(Student
ID, Student name, DOB, Gender,
Postcode) VALUES (“ST6”,
“James”, #30/01/2000#, “M”,
“OX68TY”)

We use “” for CHAR (strings) and #...# for dates and just simply write
integers as integers.
This will insert into the students table a singular record that covers items in
all fields.

How to update items in a table
 We use the UPDATE….SET … = .. Command to edit existing data in the database.

SQL Description Result

UPDATE Students SET StudentName =
“James”

This will edit all of the records
under the field student name to
have the same name “James” in
the students table.

All student names = James

UPDATE Students SET StudentName =
“Adam” WHERE Student ID = “ST6”

This will change the record defined
by primary key ST6 to have the
student name “Adam” (opposed to
the previous “James”

ST6, Adam, 30/01/2000 , M,
OX68TY

How to delete items from a table

As well as adding and editing data, SQL also enables you to delete data from a database using the DELETE
command.
This uses similar syntax to the SELECT command

SQL Description Result

DELETE FROM Students WHERE
StudentName = “James”

This will delta every record with
student name James

All student names = James

DELETE * FROM Students Deletes all items in the table but
does not remove it

Empty table

DELETE DOB FROM Students Deletes the field DOB from the
table

Same table but without the
field DOB

We can also increase our specified location of the WHERE operator.

If we want to search for something that we know has a pattern e.g. all the names beginning with the letter a.
SELECT StudentName
FROM Students
WHERE StudentName LIKE “a%”

You can use all the common logical operators
You are familiar with in SQL statements, including Boolean operations such as AND, OR, NOT.
SELECT StudentID, StudentName, Gender
FROM Students
WHERE DOB BETWEEN #01/04/1999# AND #31/07/2002#

In this case it would return the StudentID, StudentName, Gender of all of our students in the table as they all have
this range of DOB.

DBSM = Database management system is a software application which handles a database at fundamental levels,

allowing the database to interact with the user and other applications to:

1. Additional security to the database
2. Integrity to ensure efficiency and structure is not compromised
3. A manipulation language to access and change data (SQL)
4. An interface for other programs to access and use the data with program/data independence.

I.e. there is no concern for the underlying structure.
They are available for small systems on PC’s and for huge systems for large organizations. Microsoft access is a DBMS and
ORACLE is another DBMS.

Adam

James

James

James

